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EXECUTIVE SUMMARY

A. OBIECTIVE

The objective of this guidance manual is to provide a tool to U.S. Air Force engineers and
decision makers for usc in cvaluation and selection of air stripping with emissions control technology.
B. BACKGROUND

The development of this manual was part of a larger activity for the U.S. Air Force focused on
the ficld study and demonstration of the state of the art in air stripping with emissions control
technology. The intent of the guidance manual is to provide managers and engincers with necessary
information so that decisions relating to the application of this technology can proceed on a rational
basis. Although the information provided in the manual is available from a number of sources, it had
not been organized so that it could be readily used for air stripping technology evaluation, especially
by onc not very skilled in the art. In this guidance manual, the information is organized and provided
to the user in an interactive sprecadsheet format.
C. SCOPE

The results of the field tests for the U.S. Air Force, along with other relevant information, were

translated into a computer model used to asscss the design and economic aspects of relevant
technology and operating parameters for groundwater remediation by air stripping with emissions
control. The technology basis for the computer model and operating instructions for the sprcadsheet
arc included in the guidance manual. Also, the spreadsheet was used to cvaluatc example cases of
air stripping with emissions control. The results of the calculations arc presented and explained in
the manual.
D. METHODOLOGY

The approach uscd in this activity was to provide a useful computer model in an casy to usc
format. The economic simulation was developed as sprcadsheets that may be used on a personal
computer. Multiplan by MicroSoft was the software chosen because of its capability to automatically
perform iterative calculations (needed when circular dependencies exist between sprecadshect cells).
In the development of the computer model, information was utilized from the literature and also from
the results of the ficld study of air stripping with emissions control conducted for the U.S. Air Force.
E. TEST DESCRIPTION

The Eglin Air Force Basc air stripping ficld study is described in full in ESL TR 90-51, Air

Stripping and Emissions Control Technologies: Ficld Testing of Countercurrent Packings, Rotary Air

il




Stripping, Catalytic Oxidation, and Adsorption Materials. Results from this study were used in the

development of the computer model for this guidance manual.
F. RESULTS

Analysis of the lifetime operating costs for application of air stripping technology for remediation
of contaminated groundwater indicates that the use of emissions control devices for systcms for air
stripping of VOCs from groundwater considerably increases the costs of such operations, cost
considerations favor the use of lower values of the stripping factor, and the costs of the remediation
ol contaminated groundwater are largely controlled by operating rather than capital costs.
G. CONCLUSIONS

The spreadshect-based model developed and described hercin can be readily utilized by Air
Force personnel for the evaluation and selection of an air stripping with emissions control technology
for the remediation of VOC contaminated groundwater. If desired, the correlations for design and
cost cstimations can be updated as new information becomes available. By varying financial input
paramcters, such as depreciation period, interest rates, etc., different scenarios may be evaluated for

particular operating conditions of groundwater flowrate, contaminant concentration, etc.
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PREFACE

This report was prepared by the Oak Ridge National Laboratory, P. 0. Box
2008, Oak Ridge, TN 37831-6044, for the Air Force Engineering and Services
Center, Engineering and Services Laboratory, Tyndall Air Force Base, Florida, as
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Emissions Control" in accordance with DOE Interagency Agreement No. 1489-1489-Al.
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Ridge National Laboratory is managed by Martin Marietta Energy Systems, Inc., for
the U.S. Department of Energy under contract DE-AC05-840R.1400.

This document details the resuits of activities performed under Task 4.4 of
the statement of work, Phase 4: [IRP Phase IV Users Manual. A related document

completed under the same contract is ESL TR 90-51, Air Stripping and Emissions

Control Technologies: Field Testing of Countercurrent Packings, Rotary Air
Stripping, Catalytic Oxidation, and Adsorption Materials. The AFESC/RDVW Project
Officers for this effort were Captain R. A. Ashworth and Captain Edward Marchand.

Mention of trade names or commercial products within this document does not
constitute endorsement or recommendation for use.

Copies of the VOC-2.100 and VOC-2.300 spreadsheets are available from the
Chemical/Physical Treatment Technology Area Manager, HQ AFESC/RDVW, Tyndall AFB,
FL. Include a diskette with your request.

This report has been reviewed by the Public Affairs Office and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be
available to the general public, including foreign nations.

This technical report has been reviewed and is approved for pub11cat1on
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MANUAL FOR ESTIMATING COST OF VOC REMOVAL FROM
GROUNDWATER CONTAMINATED WITH JET FUEL

SECTION I

INTRODUCTION

A. OBIJECTIVE

This manual is intended to provide relevant information for persons involved in the remediation
of groundwater contaminated with jet fuel or similar compounds. Developing strategics for
groundwater remediation consists of four principal steps: (1) site characterization; (2) determination
of treatment requirements; (3) remediation system design; and (4) system fabrication, installation, and
operation. This manual is designed to be of primary benefit for item (3) of the above list; it may also
be of benefit for items (2) and (4). Typical remediation technologies are identified and discussed;
the costs of installed systems based on these technologies may be estimated using the enclosed
software and an IBM-compatible personal computer. Much of the information provided in this
manual is from a field study of air stripping with emissions control performed by the Oak Ridge
National Laboratory (ORNL) for the United States Air Force (Reference 1).

Jet fuel contains a large percentage of soluble hydrocarbon compounds that are easily removed
from groundwater by aeration; thesc compounds are called volatile organic compounds (VOCs) and
have a Henry’s coefficient of greater than 16 to 32 ft* atm/pound mole [1 to 2 m*® atm/kmol].
Benzene is a VOC, having a Henry’s coefficient estimated to be 76 ft* atm/pound mole [4.7 m?
atm/kmol] at 68°F (Reference 2); naphthalene is not considered to be a VOC, having a Henry's
coefficient estimated to be 6.7 ft* atm/pound mole [0.42 m*® atm/kmol] at 68°F (Refcrence 3).
Compounds with Henry’s coefficient of less than 16 ft* atm/pound mole [1 m? atm/kmol], such as
naphthalene, are not ordinarily removed very efficiently in aeration devices designed for VOC
rcmoval.

Stripping fuel components from water merely transfers them to another medium, usually air.
Abatement of gaseous hydrocarbons by adsorption onto activated carbon has been utilized for many
years; this process transfers the contaminants to another medium — activated carbon — which
rcquires disposal or regeneration. Abatement by catalytic oxidation potentially offers a very high

destruction of fuel components, producing CO, and H,0.




Information contained in this manual and accompanying software provides the uscr with a
mcthod of estimating unit processing costs (U.S. dollars/1000 gallons) for remediation of groundwater
contaminated with jet fuel components. Two options are offered for air stripping — a traditional
packed tower and a rotary air stripper. Also, two options are offered for emissions control —
activated carbon adsorption and catalytic oxidation. Estimated treatment costs include fixed capital
investment recovery, direct and indirect operating costs, and a method of accounting for uncertainty
in any cost component. The estimates in these primary cost categorics are used as inputs to an
operating lifetime cost analysis. The cleanup costs are usually dominated by annual operating costs
rather than fixed capital investments. Cost estimating technigues are compatible with proccdures of
the U.S. General Accounting Office. American units (pounds-feet-scconds) are used in this report.
When not typical of supporting information, other more appropriate units, usually metric, are given
in brackets, [ ]

B. BACKGROUND

Contamination of groundwater by VOCs is an important environmental problem. Sources of
such contamination include accidental spills and leaking storage tanks and transport lincs.
Contamination of soil and groundwater from a lcaking storage tank is illustrated in Figure 1. As
shown in this figurc, remediation of a contaminated aquifer is part of a larger problem of remediating
the contaminated site, which includes the unsaturated zones. Site remediation usually involves
containment of the contaminant(s). The National Oil and Hazardous Substances Contingency Plan
(Reference 4) identifies three general categories of remediation activities: (1) initial, (2) source
control, and (3) off-site measures. Pumping of groundwater can be useful for all three categories.
Groundwater that ordinarily flows continuously through the site is an important agent for transporting
soluble contaminants. Pumping activities usually involve depressing the groundwater table in the
affected region by pumping from a system of wells. Contaminated water from such an operation
requircs treatment, as necessary, for s discharge; such treatment is the subject of this manual. A
block diagram for the remediation of contaminated groundwater by air stripping with cmissions
control is presented in Figure 2.

A review of relevant technology was recently presented by Singh and Counce (Rcference 5).
Air-water contactors may be designed to give high removal of VOCs from water; contaminants of less
volatility will be removed simultaneously to a lesser extent. The contaminated effluent air from the
air-water contactor is often a matter of concern. If this strcam is rot suitable for discharge, then

trcatment to restore acceptable air quality will be required. During the remediation  activity, the
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concentration of contaminants in the groundwater will be reduced to an acceptable level for
discharge. At some point in this activity, the effluent air quality may improve to the point that any
cmissions control originally required is no longer necessary. The objective of an air stripper with an
emissions control unit is to remove VOC contaminants from water so that the water is suitable for
discharge for the life of the remediation activity; a corresponding objective is to operate the unit so
that all other appropriate environmental regulations are observed for the same time period.
C. SCOPE/APPROACH

The purpose of this manual is to provide a means of assessing the unit processing costs (U.S.
dollars/1000 gallons) of several configurations of an engineering system for the removal of jet fuel
components from contaminated groundwater; these cost are estimated as a function of a number of
key engineering and cost parameters. Some background information is also provided to give the
rcader a brief description of relevant technical information. The possible system configurations
include an air stripper with and without emissions control. Two types of air strippers may be used:
(1) a traditional packed tower for countercurrent gas-liquid contact; and (2) a centrifugal contactor,
also for countercurrent gas-liquid contact. The choice of gaseous cmissions control devices includes:
(1) none, (2) catalytic oxidation, and (3) activated carbon adsorption. Complete computer codes and
operating instructions for performing these tasks are included. The output from this assessment is
an estimate of the unit processing cost for remediation of contaminated groundwater for the sclected

cngincering and economic parameters.




SECTION 11

RELEVANT TECHNICAL INFORMATION

A.  AIR STRIPPING
1. Packed Air Strippers

Packed gas-liquid contactors with countercurrent gas and liquid flows provide a highly
efficient means of stripping VOCs from groundwater. The design of packed towers is well developed
in the chemical engineering literature (References 6, 7, and 8). A typical packed tower is shown in
Figure 3, and other design details appear in Figure 4. The design process for strippers usually begins
with known liquid flow rate and composition information, including that of the solute to be removed.
The first step consists of the selection of the stripping medium; in this section, air is generally
assumed to be thc medium. The air flow rate is selected such that an adequate "driving force” for
this operation can be maintained. For conditions that typically exist in air strippers, this may be

satisfied by choosing a stripping factor greater than 1. The stripping factor is defined as

S = mGJL , 4}

whcre m is the equilibrium-phase distribution ratio, y/, for the VOC of concern. The stripping factor
also contains the ratio of gas-to-liquid superficial molar velocities, G/L; it is helpful to note that this
ratio is identical to that of the molar flow rates of these two phases, since the tower cross-sectional
arca is not often known in the early stages of the design process. The optimum valuec of S is
frequently found to be between 1.25 and 4.

Two general types of packing are useful for VOC removal by air stripping - random and
structured - as shown in Figure 5. Random packings are available in a number of varictics, with
standard saddles and slotted rings most commonly used for commercial applications. The commercial
names may vary with the manufacturer, such as Flexirings® from Koch Engineering Company vs Pall
rings from Chemical Processing Products Division of Norton Company; and Flexisaddles® from Koch
Engineering Company vs Intalox® saddles from Norton Chemical Process Products or Novalox®
saddles from Jaeger Products, Inc. Random packing is sometimes referred to as "dumped” packing
due to the usual method of placement in the tower. Random packings are available in a number of
nominal sizes or diameters, d, of up to 0.29 feet [89 mm] and in materials of ceramic, plastic, or
mctal. There is a tendency for maldistribution of the liquid phase in towers filled with dumped

packings, especially when the packing size and depth of packing in the bed are incorrectly chosen.
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Figure 4.

Packed column internals. (a) Packing support and redistributor assembly:;

(b) Trough-type liquid distributor; (c) Perforated pipe distributor; (d) Rosette
redistributor for small towers; (¢) Hold-down plate, particularly for low-density
packing.

[Reproduced with permission from Stanley M. Walas, Chemical Process
Equipment, (Stoneham, MA: Butterworth-Heinemann, 1988)]
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Figure 5.
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Some kinds of tower packings: (a) Raschig ring; (b) partition or Lessing ring;
(c) double spiral ring; (d) metal Flexiring (KOCH Engr. Co.); (e) plastic pall ring:
(f) ceramic Berl saddle (Maurice A. Knight Co.); (g) ceramic intalox saddle
(Norton Co.). (h) plastic intalox saddle (Norton Co.); (i) metal intalox saddle
(Norton Co.); (j) Tellerette (Chem-Pro Co.); k) plastic tripak (Polymer Piping
and Metals Co.); (1) metal tripak (Polymer Piping and Metals Co.); (m) wood
grid; (n) section through expanded metal packing; (o) sections of expanded
metal packings placed alternatively at right angles (Denholme Co.); (pj) GEM
structured packing (Glitsch Inc.).

[Reproduced with permission trom Stanley M. Walas, Chemical Process
Equipment, (Stoncham, MA: Butterworth-Heinemann, 1988)]
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This tendency is less when the ratio of column diameter to packing size, D; /d,, is greater than 8
(Reference 6), with the "best” value occurring at 15. Eckert (Reference 9) recommends minimum
D; /d, values of 30 for Raschig rings, 15 for standard saddles (other than Raschig rings), and 10 to
15 for slotted rings. Because of the tendency of the liquid and gas flows to segregate in towers filled
with dumped packings, it is customary to redistribute the liquid at intervals, Z, , which vary from 2.5
to 10 times the tower diameter; Eckert (Reference 9) reccmmends maximum Z, /D, valucs of 2.5 o
3 tor Raschig rings, S to 8 for standard saddles (other than Raschig rings), 5 to 10 for slotted rings,
or a maximum Z, of 20 feet, whichever is smaller. There i: still speculation over the extent that good
initial liquid distribution can affect the maximum Z, /D; ratio (Reference 10).

Structurcd packings offer advantages of low pressure-drop service and usually have excellent
liquid distribution characteristics; it is critical, however, that the initial distribution of gascs and liquids
be done correctly in order to take advantage of the characteristics of these packings. The structured
packings are manufactured as clements that are carcfully fitted to the inside dimensions of the tower
in an ordered, or structured, manner. An cxample of such a packing fabricated from corrugated
sheets is shown in Figure 5. These sheets are commonly made of gauze (woven cloth), ceramic, or
sheet metal, as well as of various plastics. The gauze packings arc sometimes referred o as “high-
cfficicncy” packing; an example of such material is the Koch-Sulzer packing. The cloth naturc of the
surface promotcs a capillary action so that the liquid covers all the available surface even at low liquid
loadings; the type of liquid flow inherent in such material appears to greatly enhance liquid-phase
transport (References 11, 12, and 13). Similar packing clements fabricated of sheet metal or plastic
do not appear to have the reduced liquid-phasc resistance and ncar constant interfacial arca
properties of the gauze-type packings. The gauze-type structured packing is morc expensive than
cither sheet-metal or plastic structured packing or dumped packing; its use, however, can significantly
reduce design height requirements.

Discussion of typical tower intcrvals, distributors, packing support, ctc., is presented by
Treybal (Reference 6) and Perry et al. (Reference 14). The design of these items is critical for
cflicicnt packed-tower operation (References 15 and 16). They are usually manufactured and
distributed by the same commcrcial concerns that supply tower packing. The flow-through types of
packing, such as Pall® rings, mctal Intalox® saddles, and structuced packings, requirc that more
attention be paid to the distribution of both gascs and liquids than for older types of packings (bluff-
body packings) such as Raschig rings, Berl saddles, and ceramic Intalox saddles. These older types

of packings force fluids to flow around them, causing a higher pressure loss, and provide morc
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capacity to correct for maldistribution (Reference 17). Entrainment eliminators are not essential for
VOC removal in the air stripper, but they may be very important for equipment operating
downstream from the stripper tower. Knitted wire mesh is especially effective for removing entrained
droplets of liquid from gas streams, although many other devices are available; further discussion on
this subject is found in References 6 and 8.

Packed towers are usually circular in cross-section due to ease of construction and strength
(Reference 6). The diameter of a tower for fixed gas and liquid rates is normally boundcd by limits
of operability. At a sufficiently small diameter, the tower will flood. At too large a diamcter, the
packing will not be sufficiently wetted for efficient mass transfer. Towers have operated with
superficial liquid velocities as low as 0.007 inches/second [0.18 mm/second}; however, special liquid
distribution systems arc required (Reference 18). Usually, the tower is designed to operate at a given
pressure drop per unit depth of packing; for strippers, values of 0.25 to 0.5 inches H,O/foot [200 to
400 Pascals/meter! of packed depth are common (Reference 6). Alternatcly, the tower may be
designed by selecting a gas velocity as a fraction of the flooding gas velocity; design values of 50 to
80 percent are common.

The height of packing required for a given scparation may be conveniently calculated using

the transfer unit concept,
Z = Hy Ny . @

where Z is the height of packing required, and H,;; and N, are thec height and number of overall
liquid transfer units, respectively. The above rclationship may also be written in terms of overall gas
transfer units; the form chosen usually indicates where the principal resistance lies. The height of
an overall liquid transfer unit is calculated in the procedures used herein from estimates of heights

of individual gas and liquid transfer units,

H, = H +Hg/S. (3)

The correlations for the individual transfer unit heights H; and Hg are based on a revised version
of the Corncell equations, as presented by Fair (Rcference 8).

The equilibrium distribution ratio, m, is related to Henry’s constant, H, by

m = y/x = H(p /M;Pp) , 4
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where p; and M, are the density and average molecular weight, respectively, of the liquid phase and
P, is the total pressure..

The Henry'’s constant determines the distribution of the solute between the gas and liquid
phases and depends upon the nature of the solute and the temperature. Although the Henry's
constant can be estimated from the vapor pressure of pure solute and the solubility of the solute in
water, experimental determination is usually recommended. For benzene, the expcrimentally
determined expression for the variation of Henry’s law constant with temperature that was used in

this procedure was derived from Ashworth et al. (Reference 2) and is given as

H = exp(15.216 - 5—7;—9) ft*atm/pound mole , )

where T is the absolute temperature in degrees Rankine. Further information on estimates of Hy
and H can be found in a review by Singh and Counce (Reference 5).

The number of transfer units at conditions common to VOC removal is

X
o ey (6)

N
. y/m

where x, and x, arc the liquid-phase molc fractions cxiting and cntering the stripper, respectively.

The N, is estimated in the procedure used here by

_ G-y /m(A-YS)(x,-y/m)) + 1S] o

ok (1 - 1s) ’

where y, is the entering gas-phase mole fraction (usually equal to zero). In its simplest form, the
number of transfer units is the change in liquid-phase solute composition divided by the average
solute driving force composition.

The design of packed towers usually includes a substantial safcty factor to account for
uncertaintics in the data base. Bolles and Fair (Reference 19) state that the calculated height should

be multiplied by 1.7 to achicve 95 percent confidence when using their correlations for H; .
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The data base for estimation of mass transfer information is often not available for new
packings. Advertisement for new packings often gives overall coefficient information; these data,
however, usually involve the absorption of CO, into caustic solutions in which liquid-phase resistance
to mass transfer is minimal and, thus, is inappropriate for general use in the design of air strippers
for VOC removal.

In general, inexpensive saddles and slotted rings, which have long been reliably used in
industry, appear to be cost-cffective for VOC strippers (Reference 20). Specialty random packings,
however, are continually being developed and marketed; these packings are usually much more costly
than "standard” types of packing. The economics of the use of specialty random packings should be
carcfully investigated before they are specified and used. The random packing used for the
performance and cost estimation in this manual is plastic Flexirings®. The major use of structured
packings for VOC stripping appears to be to repack existing towers where greater efficicncy or more
capacity is required (Reference 20). Another use of structured packings may be to improve situations
where minimum space exists for the stripper or where semivolatile components are being stripped.

2. Centrifugal Air Strippers

An alternative to the traditional packed column for countercurrent gas-liquid contact is the
centrifugal contactor. A schematic of the centrifugal contactor is shown in Figure 6. The centrifugal
vapor-liquid contactor is composed of two major components: the rotating packing and the stationary
housing. The liquid phase is fed into the center of the rotating packing and flows outward duc to
the centrifugal force. After exiting the packing, the liquid phase impacts the housing wall and flows
by gravity out of the unit. The vapor phase is introduced into the annular space between the packing
and the housing and flows inward due to the pressure driving force. Seals are provided between the
rotating packing and the housing to prevent the vapor phase from bypassing the packing. The high
shear forces experienced by the liquid phase cause the formation of very thin films and rapid renewal
of the interfacial surfaces. The rotation of the packing also causes considerable turbulence in the
vapor phase. Both of these factors contribute to efficient mass transfer.

The concepts used to design conventional packed towers can be modified for the design of
the centrifugal vapor-liquid contactors. This design is based on tests (Reference 1) of the HIGEE
centrifugal contactor that is marketed by Glitch, Inc., of Dallas, Texas. Characteristics of packing
matcrial used in these tests are shown in Table 1. In designing a conventional packed tower, the
diameter of the tower and the depth of packing arc the two variables which need to be determined.

Similarly, for the centrifugal vapor-liquid contactor, the cross-sectional area at the inncr radius and
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A Schematic of Centrifugal Vapor-Liquid Contactor.
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TABLE i. CHARACTERISTICS OF PACKING MATERIAL USED IN TESTS OF THE
HIGEE CENTRIFUGAL CONTACTOR (REFERENCE 1)

SPECIFIC SURFACE AREA
ROTOR e VOIDAGE (%)
1 763 95.0
2 630 93.4

Material: 85% nickcl, 15% chromium (Sumitomo Electric Industries, Ltd.)

the value of the outer radius arc the two critical variables. An additional complexity ariscs in the
design of the centrifugal vapor-liquid contactor because the cross-sectional area at the inner radius
can be varied by changing cither the radius or the axial length. This results in an iterative design
process in which the inncr radius, outer radius, and axial length are varied to arrive at an optimum
design solution. Thc maximum inncr radius is thought to be approximately 0.66 fcet [200 mm]; the
minimum is 0.42 fect [127 mm]. The ratio of outer to inner radius should be approximatcly 2.
The cross-scctional arca required at the inner radius is dependent upon the desired hydraulic
capacity. This design of these units should be closely coordinated with the manufacturer. The results
of hydraulic capacity tests (Reference 1) are shown in Figure 7, along with the Sherwood corrclation.
These results indicate that the Sherwood correlation underestimated the limit of operability for the
rotational spced in the case of the Sumitomo packing. However, there was good agreement for the
wirc gauze packing. A sccond-order polynomial curve fit for the experimental data is also shown in

Figure 7. The cquation of this curve is:

log Y = -2.274484 - 1.1367log(X) - 0.168118[log(X)]? , ®)

with a coefficicnt of determination ¢¢ ) of 0.80. The Y and X in this equation are the ordinate and

abscissa, respectively, for Figure 7.

’S. P. Singh, Personal Communication with R. M. Counce, September 1989.
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The pressure drop across the rotating packed torus of a centrifugal vapor-liquid contactor is
modeled as a function of two terms. The first term accounts for the pressure drop due to rotation
of the packing, and the second term accounts for pressure drop resulting from the flow of fluids
through a porous media:

®)

avg ’

a
AP, = 1.356 x 10%p 5 w(r; - 1)) + 1.458 x 10°2p (1, - 1)V, atm
e

where pg is the gas density in pound/ft?, w is the rotational speed in rad/second, r, and r, are the
outer and inner radii in feet, respectively, a, is the packing specific area in 1/feet, e is the packing

void fraction, and Vg, is the average superficial gas velocity in feet/sccond. The coefficient of

avg
dctermination (r?) for the regression fit is 0.94. Although the approach outlined above is a rather
simple representation of a complicated system, it does a reasonable job in describing the experimental
data and is convenient to use.

The mass transfer results for the HIGEE centrifugal contactor are based on a study by
Wilson et al. (Reference 1); a variation of the transfer unit concept was developed by Singh

(Reference 21) to represent the results of this study:
1t(r22 - r,z) = A N » (10)
where the area of an overall liquid-phase transfer unit is

A‘OL - 3.37 : 105 (L./IJ'L aP)O.G (szaJsz a:)-o.” ﬁ2 , (ll)
ap

where L is liquid mass velocity, p,_is liquid viscosity, p;_ is liquid dcnsity, and a_ is acceleration. The
dimensionless groups are the Reynolds number and Grashof number. Although the cocfficient of
determination (r 2) from regression analysis was only 0.61, the correlation predicts the arca of a
transfer unit (ATU) within plus or minus 20 percent, which is similar to what cxisting correlations
predict for the conventional packed tower. The above corrclation is based on the assumption that
the ratc of mass transfer is liquid-film controlled. The proposed corrclation could be madc more
general by including the Schmidt number. Howecver, since the Schmidt number in the experimental
data remained constant, it may be considered to be part of the coefficient.

Power consumption for a centrifugal vapor-liquid contactor can be modeled using two distinct

terms. The first term can be used to account for all the frictional losses and the sccond term to
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account for the power required to accclerate the liquid entering the packing torus to the rotational
specd at the outer radius. The frictional losses are highly dependent upon the design of the machine
and cannot be predicted without advanced knowledge of the design. The power required to
accelerate the liquid, on the other hand, can be described by a theoretical model (Reference 22).
An expression for the overall power consumption was obtained by Wilson et al. (Reference 1). For
the three rotors tested, the experimental data for the region where the rotational speed was greater

than its limit of operability gave the following equation:
P/ =122 +464x10°pri0?Q , (12)

where Q is the volumetric liquid rate. The coefficient of determination (r ?) for this equation was
0.92. The correlation provides a reasonable prediction of the power consumption over the operating
conditions studied by Wilson et al. (Reference 1).
B. EMISSIONS CONTROL

Although air stripping is an effective technology for removing VOCs from groundwater, it simply
transfers contaminant from one medium to another. In many cases, the removal of the VOCs from
the air may be necessary to reduce the exposure to these chemicals. Emissions control technologies
have been used by industries which use solvents or other VOCs in production processcs to either
recover or destroy these compounds. The three most commonly used techniques for controlling
VOCs from air streams are (1) adsorption onto activated carbon, (2) catalytic oxidation, and
(3) thermal oxidation. This work focuses on VOC control by means of adsorption onto activated
carbon and catalytic oxidation.

1. Activated Carbon

Activated carbon can be produced from petroleum fractions, wood, coconut shells, and coal,
and then given treatment by superhcated stcam to extend the pore network of the particles and to
give activated carbon a large surface area.

The use of activated carbon to remove solvents from airstrcams is well established and has
been employed since the 1930s (Reference 23). The adsorption of the solvent molecules onto
activated carbon is mainly due to Van der Waal forces, and no chemical reaction takes place. The
adsorption of the VOCs from the gas stream onto the activated carbon bed depends upon (1) type
of carbon, (2) relative humidity, (3) tempecrature, (4) concentration and type of VOC, and

(5) rcgeneration steps used (Reference 24).
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Several equations are available in the literature to describe the adsorption of compounds onto
activated carbon. These include the Braunauer-Emmett-Teller (BET), Freundlich, Langmuir, and
Dubinin-Radushkevich equations. A commonly used isotherm describing the adsorption of single-

component VOCs from gas streams is the Freundlich isotherm,
q = K Ciw‘ ’ (13)

where q; is the component loading on the carbon for component i, K; is the Freundlich coefficient,
C, is the gas-phase concentration, and 1/n; is the Freundlich exponent.

Equilibrium information for gaseous VOCs over activated carbon is difficult to obtain from
the open literature. A method for estimation of such information is presented by Crittenden et al.

(Reference 25); this method is based on work by Dubinin and Radushkevich (Reference 26):

- P \?
_B RT In—2
p? P,

(14)

’

W.p
10

] exp

where W, is the maximum available space on the carbon, p, is the liquid density of the pure
adsorbate, T is temperature in Kelvin, B is the microporosity constant, 8 is the affinity coefficicnt,
and P; and P, are the partial and saturation pressures of component i, respectively. The parameters
W, and B are characteristic of the adsorbent. These constants for the reference compound, toluene,
adsorbing on a typical carbon are imbedded in the program SPEQ, which is used to cstimate
Frcundlich parameters. This program is included in this manual in Appendix A. The affinity
coefficient can be determined from the polarizabilities of the adsorbate and a reference compound
by:

B (s

The polarizability of the reference compound is also imbedded in the program SPEQ. The
polarizability of any compound can be calculated from the refractive index using the following

cquation:
p = [(? - DM}/ [(x* + 2)p,] . (16)

Equation (14) may be used to gencrate g; vs C; information, which may be correlated into the form

of the Freundlich equation (Reference 25).
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Multicomponent gaseous VOC adsorption equilibria have been estimated by Crittenden et
al. (Reference 27), using simplified ideal adsorbed solution theory (IAST). This approach utilizes
single-component Freundlich isotherm information to predict loading. The velocity of the loading

wave front for single-component adsorption of component i onto activated carbon is expressed as

Ve C,i P

= a7
@ec *+ pp Cy©)

wi

where V,, is the wave front velocity, Vy is the fluid superficial velocity, p, is the carbon bulk density,
C,, is the influent concentration of i, and ¢ is the carbon void fraction. This reduces to the following

cquation for most cases:

_ Ve G Pg
9P c

(18)

wi

The wave velocity of the kth component, for k = 2, of a multicomponent mixture adsorbing

onto activated carbon is given by Speth (Reference 28):

k-1
VeCorPp - 2; @ P+ CjPpe(Vy ~ Vol + (G Pc + Gy Pr @)V, (19)
i
@y Pc* Gx Pr ©

Vi =

The subscript i,j indicates compound i in zone j, and C,, is the influent concentration of component
k; theoretically, there is a zone for cach compound in the multicomponent adsorption model. For
adsorption of N components, in which the Nth component is the least strongly adsorbed,
Equation (19) is the leading wave front for all the adsorbing components when k = N. The

concentration of the ith species in zone k may be estimated by combining Equation (19) and IAST

to give:
N n;
L& itk
C. - ik |jk i=1toN , (20)
e N nk,
pIL

ik

where N is the total number of components. Based on IAST, the ratio of carbon requirements for
a given cycle time of a mixture which is composed of components in addition to component i to that

of a single component of concentration C; may be calculated by the ratio ¢, where
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O = V!V, - @y

Thus, activated carbon requircments for a multicomponent adsorption may be estimated based on
single-component isotherm information and the ratio ¢. Component i should be one of the lcast
strongly adsorbed components, and its inlet concentration C; should be the same for both wave
velocity calculations.

The adsorption of VOCs from the vapor phase can be affected by the relative humidity. This
cffcct can be explained by examining the adsorption mechanism of water from the gas stream. At
low relative humidity, the removal of water from the vapor phase is due mainly to adsorption onto
the surface of the adsorbent. Due to a relatively low number of hydrophilic sites available on the
activated carbon surface, the adsorption of water is fairly low. As the concentration of the water in
the vapor phase increascs, capillary condensation begins to occur in the pores of the activated carbon
and the sites available for direct adsorption of the organic molccules from the vapor phase arc
rcduced. The capillary condcnsation of water increases the resistance to mass transfer of other
componcnts in the pores because the compound must first dissolve in the water and then travel
through the water to the adsorption site. The reduction in the adsorption of VOCs from the vapor
phasc decreases rapidly as the relative humidity riscs above 45 to 50 percent (Reference 29). Thus,
the lifctime of the adsorption bed can be extended by lowering the relative humidity of the gas
strcam, which can be accomplished by raising the gas strcam temperature. Increasing the temperature
too much, however, can also reduce the adsorption capacity. The temperature and rclative humidity
nced to be adjusted to obtain the optimum adsorption capacity. For the calculations in the
sprcadshect described in this manual, the gas stream is heated to 100°F-.

a. Nonrcgencrative

In many cases, the amount of activated carbon used for vapor phase removal of VOCs is
small cnough so that disposal of the spent carbon is a viable economic option. However, othcer issucs
nced to be considered, such as potential classification of the spent carbon as a hazardous waste. One
option available may be the regeneration of the carbon by a commercial vendor, which may be less
cxpensive than on-site regencration.

b. Regencrative

Stcam stripping of activated carbon is a common method of rcactivating carbon when the
adsorption involves concentrated solvent vapors. Decisions on stcam stripping as a mcthod of

rcgencration are very dependent on whether the condensate from this stripping operation will
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scparate into two phases for easy removal of the organic phase. For adsorption of dilute VOC
compounds onto activated carbon, the condensate from steam regencration may not contain sufficient
VOCs to form a separate phase and may require trcatment of a secondary aqueous phasc
contaminated with dilute VOGCs. To compound these problems, Crittenden et al. (Reference 29)
report very high steam requirements for regeneration of activated carbon used in VOC adsorption
service. Some estimated on-site costs for large-scale regeneration by multihearth, fluidized-bed, and
infrared technologies are reported by Adams et al. (Reference 30). The current availability of
fluidized-bed and infrared regeneration technologies is questionable.
2. Catalytic Oxidation

Another type of technology that has been used in industry to control the emission of VOCs
in gas strecams is catalytic oxidation. In this process, a catalyst is used to promote the oxidation of
organic compounds at lower temperaturcs than required for thermal oxidation. The catalyst increasces
the ratc of the reaction by bringing the reactants together or by lowering the activation energy of the
reaction. Approximately 500 to 2000 catalytic oxidation units are used to control the emission of
VOC:s in various industries (Reference 31).

The performance of a catalytic oxidation unit depends upon temperature, type and
concentration of compounds, space velocity (residence time), and type of catalyst. A typical catalytic
oxidation unit is usually composed of four basic parts. A preheater is used to bring the incoming gas
strcam to the required tempcrature before entering the catalyst bed. This temperature is dependent
on, for example, the contaminant concentration in the gas stream, the type of catalyst bed (fixed-bed
or fluidized-bed), and the operating temperature of the catalyst bed. After the preheater, a mixing
chamber is used to promotc uniform temperature of the gas. The catalytic system then follows, which
may be a fixed-bed or fluidized-bed system. The catalyst is usually composed of cither metal oxides
or finely divided precious metal on cither a metal or ceramic support structure. The operating
tempcrature of the catalyst bed is determined by the required contaminant destruction cfficiency.
For the same type of catalyst, some species require higher oxidation temperatures than others. Also,
for the same contaminant species, the required oxidation temperature varics with the type of catalyst
used. The final part of the catalytic oxidation unit is a heat recovery system, which is optional.

Spivey et al. (Reference 32) conducted a literature review on heterogeneous catalytic
oxidation of potential environmentally hazardous compounds. They presented an excellent review
on the mechanism of catalytic oxidation reactions and a comparison of metal oxide and precious-metal

catalysts. Listed below are some findings presented in their survey report:
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1. Oxides of copper, manganese, cobalt, chromium and nickel are the most active single-

metal oxide catalysts.

2. Mixed-metal oxide catalysts generally have higher activity than single-metal oxide catalysts.

3. Mectal oxide catalysts are less active than precious-metal catalysts; but the metal oxide

catalysts arc more resistant to certain poisons, such as halogens, arsenic, lead, and
phosphorus.

Palazzolo et al. (Reference 33) studied the destruction of mixtures of the halogenated
hydrocarbons shown in Table 2 using fluidized-bed metal oxide catalysts and reported that the overall
destruction efficiency varicd from 97 to 99 percent for all the mixtures tested. They also noted that
the catalyst temperature had the largest effect on the destruction efficiency, while other variables,
such as mixturc composition, air-to-fuel ratio, space velocity, and inlet concentration, had only a
marginal effect on the destruction efficicncy. The destruction efficiency of tetrachlorocthylene was
the lowest of all the compounds tested. The destruction efficiency across the preheater ranged from
1> w0 S5 percent.

In the study by Wilson et al. (Reference 1), the noble metal catalyst was poisoned almost
imm. liatcly in field tests. Sulfur compounds were suspected to be the cause of the poisoning of the

catalyst.
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TABLE 2. MIXTURE COMPOSITIONS AND TARGET CONCENTRATIONS FOR

CATALYTIC OXIDATION TESTS (REFERENCE 33)

TARGET INLET
MIXTURE CONCENTRATION MIXTURE CONCENTRATION
DESIGNATION LEVEL COMPOUNDS (ppnav)*
Mixture 1 Bascline Trichlorocthylene 6.3
1.2 dichlorocthylene 85
14.8
Mixturc 1 Low Trichlorocthylene 1.9
1,2 dichloroethylene 1.0
29
Mixture 2 Bascline Trichlorocthylene 2.7
B<nzene 1.5
Ethylbenzene 5.6
Pentanc 11.5
Cyclohexane 14.1
35.4
Mixture 3 Bascline Vinyl chloride 7.5
Trichlorocthylene 18
9.3
Mixturc 4 Bascline 1,2 dichlorocthanc 10
Trichlorocthylene 10
1.1,2-trichlorocthane 10
Tetrachlorocthylenc 10
40
Mixturc 4 High 1,2 dichlorocthane 50
Trichlorocthylene 50
1,1,2-trichlorocthane 50
Tetrachlorocthylene 50
200

*ppmv = parts pcr million by volumc of the compound.
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SECTION 11

EQUIPMENT DESIGN AND SIZING

In this manual, the design of air strippers for removal of soluble jet fuel components from
groundwater is based on the removal of benzene. Benzene was chosen because it is an important
contaminant and one of the less volatile of the soluble jet fuel VOCs. All of the soluble jet fuel
VOC:s of higher volatility (higher Henry’s coefficient) can be assumed to be removed in the stripper
with removal efficiencies at least that of benzene. It is more difficult to generalize stripper removal
efficiencies for compounds of Icsser volatility; one approach would be to neglect the removal of these
compounds for calculation of stripper performance, while accounting for their presence in any
prediction of carbon bed loading.

The cost of traditional packed-bed stripper towers is based on their physical size. The
spreadsheet developed for this manual determines the size of the stripper from specification of
stripping factor, fraction of gas velocity at flooding, and component removal efficiency. The sclection
of the stripping factor determines the ratio of gas to liquid flow rates for this contacting operation.
The selection of the appropriate fraction of flooding (ratio of gas velocity to that at flooding, both
at the same ratio of gas to liquid flow rates) determines the tower diameter. The internal
computations of tower diameters and pressure drop across the column are based on digitalization of
the Eckert flooding and pressure drop diagram as presented by Treybal (Reference 6).

The height of the overall liquid transfer unit is based on calculations of individual gas and liquid
transfer units. Computation of the individual liquid and gas transfer units, H, and Hg, is based on
correlations provided by Bolles and Fair (Reference 19). The number of transfer units for a single
componcent is calculated based on inlet and outlet mole fractions of benzene.

The algorithm for estimating the costs of centrifugal air strippers does not involve detailed design
of the unit. Design of these units may be accomplished based on information presented carlier.
Costing of these units in the developed spreadsheet does not require detailed design.

For application to the cleanup of jet fuel from groundwater, the design of fixed-bed carbon
adsorbers is based on that for single-component adsorption of benzene and a correction factor to
account for decreased single-component bed loading based on the presence of other soluble jet fuel
species. The correction factor used in the spreadsheet calculations was determined from the carbon
adsorption studies described in Reference 1. The humidity of the gas stream is assumed to have been

reduced to less than or equal to 30 percent by heating prior to adsorption. Values of K, and 1/n; for
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the Freundlich isotherm are difficult to establish for gas-phase service, but may be estimated using
the computer program SPEQ developed by R. D. Cortright under the direction of J. C. Crittenden
at Michigan Technological University. The theoretical background may be found in a paper by
Crittenden et al. (Reference 34). A copy of this program and required input information are
provided in Appendix A. This program was used to calculate the Freundlich parameters for benzene,
as well as for trichloroethylene (TCE). As discussed later, the spreadsheet program includes the
capability for design for cleanup of TCE-contaminated groundwater.

To correct for the presence of multiple competing species (other than water), a computer
program, ETMOD, is provided in Appendix B along with a brief discussion and a sample input file,
ET.DAT. This program was developed by T. F. Speth, P. H. Luft, D. W. Hand, and J. C. Crittenden;
the theoretical background may be found in an article by J. C. Crittenden et al. (Reference 25). The
corrcction factor ¢ (discussed in Section II), which is calculated by the program, accounts for the
presence of multiple components and is used to estimate the size of carbon beds for multicomponent
systems. In the absence of an experimentally detcrmined correction factor, such as used for benzene
in the sprecadsheet, the factor ¢ may bc used. For example, since the carbon usage rate is
proportional to the wave front velocity, a value for ¢ of 2.7029/1.3794 = 1.96 for n-pentanc is
calculated from the output results in Exhibit B-2, Appendix B.

The algorithm for calculation of the cost of catalytic oxidation units is a function of gas
throughput alone. The fuel expense is a function of the operating temperature of the catalytic
oxidation unit. For 90 percent destruction of benzene, an operating temperature of the catalyst bed
of approximatecly 800°F is adequate (Reference 35). A conservative value of 900°F is used in the
spreadsheet calculations. Some information on destruction of various gascous mixtures of VOCs is
presented by Tichenor and Palazzola (Reference 36). Proper selection of this operating tcmperature
is critical to the achievement of desired removal efficiencies.

The costs of pumps, as well as operating expenses, are related to the power requirements. The
total power requirements for all pumps supplying groundwater are estimated based on the head at
the pump discharge. This discharge head, which is largely due to the hydrostatic head Z; and the

head loss due to friction, may be estimated as

Z, - (glg,) Z; + AV'Z,[g D , @2)

where f is the Fanning friction factor, g is the acceleration of gravity, g_ is the gravitional conversion

factor, Z, is the total length of water piping of diameter D, and V is the water velocity in the piping,
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The velocity of water through a well-designed piping system is assumed to be § feet/second
(Reference 37). A typical valve value of the Fanning friction factor, f, is 0.008. The required total

power consumption of the pumps may be estimated as

1 -l
p.- L% @3)
? 3962 1,

where I/ is the water flow rate in gallons per minute and the efficiency of centrifugal pumps may be

estimated as

n,=07. 24

The cost of the blower, as well as operating expenses, is also related to the power consumption,
P, = G' Z;/ 6350 0, , 25)
where G’ is the volumetric air flow rate in standard cubic feet per minute, Zjg is the total blower
static head in inches of H,0, and the overall efficiency may be estimated (Reference 38) as

n, =070 @6)

The head requirements are primarily those due to flow through the relevant major equipment items.
The estimation of the gas-phase pressure loss for the traditional packed tower was mentioned earlier.
The pressure drop for the centrifugal air stripper is from a correlation presented earlier in Section II.
The pressure drops across the catalytic oxidation unit and the activated carbon bed were assumed to

be 5 and 4 inches of water, respectively.
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SECTION IV

ESTIMATION OF COSTS FOR REMOVAL OF VOCs FROM GROUNDWATER

This section focuses upon the estimation of the cost (in current year dollars/1000 gallons of water
processed) of the removal of VOCs from groundwater. The estimation procedure involves the
following sequence, all of which is handled on spreadsheets:

1. Engincering design characterization, making use of design algorithms as discussed in the

preceding section.

2. Estimation of (1) the fixed capital costs for capital equipment and (2) annual operating costs.

All costs presented for this study are adjusted to 1990 dollars using the estimates for the
average inflation rate and the average annual real interest rate, as described later. The costs
may be accurate to approximately plus or minus 30 percent overall.

3. Use of inputs from these two steps in the operating lifetime analysis to estimate the cleanup

costs per 1000 gallons of groundwater processed.

The spreadsheet programs allow for many of the engineering and the financial parameters to be
treated as input variables, which, in turn, allows for single-variable sensitivity analysis. Because of
this, it is necessary to establish a set of "base casc" conditions summarized in Table 3. Some special
variations in the base case parameters are identified as part of the subsequent data analyses.

VOC-2.100 is a dual purpose spreadsheet that generates design parameters necessary for
estimation of fixed capital and annual operating (noncapital) costs. The design information is then
carried over into estimation (in 1990 dollars) of the fixed capital and the annual expense items. A
government-owned (break-even, or zero-profit) scenario is stipulated. Thus, there is no consideration
of the time phasing between expense and revenue, and working capital nced not be included in the
cost estimations. The design for cleanup of groundwater contaminated with jet fuel components is
estimated using the concentration of benzene in the water and accounting for the presence of other
components where necessary, as discussed previously. In addition to the calculations for removal of
jet fuel components, VOC-2.100 has the capability to treat cleanup of TCE. For completeness of
cconomic evaluation, calculations are made for catalytic oxidation of off-gas containing TCE.
However, it is noted that (1) some catalysts are poisoned by halogens, and (2) an environmental issuc

exists as to the form in which chlorine is emitted from an oxidation unit.
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TABLE 3. DESIGN INPUT VARIABLES FOR SPREADSHEET (TABLE 1 OF
SPREADSHEET VOC-2.100) (CONCLUDED)

Overall Operating Cycle Load Factor 0.85
(365 days/year = 1.00)
Cost Parameters
Equipment Installation Factor (Stripper) 2.20
EIF (Carbon and Catalytic) 1.60
Materials (SS) Factor, STRIPPER 1.70
Fuel Oil, 1990 $/10° BTU 6.15
Electricity Cost, 1990 $/kwh 0.060
Operations & Maintenance Factor 0.150
Overhead Rate (%) on Expense 100
Average_ Annual Inflation: 1977-90 0.0484

"Treybal (1980).

For operating lifetime financial analyses, the output values of fixed capital costs and of annual
expense from VOC-2.100 are used as inputs to spreadsheet VOC-2.300. This operating lifetime
analysis spreadsheet provides the total dollar cost per 1000 gallons of groundwater processed over
a 20-year equipment lifetime. The cost estimation procedures used are in agreement with guidelines
of the Unitcd States General Accounting Office (GAO). The operating lifetime analysis was used
because the estimation of capital and annual operating costs is, by itself, not adequate for the
cconomic evaluation of a proposed project. The determination of total dollar cost involves
(1) calculating the annual capital and expense costs for each year of operation and (2) summing these
yearly costs. The operating cost for each year of the operating lifetime is calculated using the annual
cxpense estimate for the base year and adjusting it to the current year with the assumed inflation
rate. Since the assumed depreciation period was 20 years, the annual capital cost is 5 percent of the
total capital costs of the major equipment items. The cost per 1000 gallons of groundwater processed
is then the total current year cost (the sum of the yearly costs) divided by the total amount of
groundwater processed (in thousands of gallons) during the operating lifetime of the air stripping

system.

30




The components of the groundwater cleanup systems consist of:

® A packed column stripper or a centrifugal stripper. Included with this unit are the pumps

and piping associated with wells to provide access to the groundwater.

® A carbon adsorption system for cleanup of off-gas from the stripper.

® Or, as an alternative, a catalytic oxidation system for cleanup of off-gas from the stripper.

Thus, six equipment configurations are possible. Other key technical design parameters used for
the economic studies are summarized as follows:

® Stainless steel construction for the stripper and the submerged pump for the groundwater

system, but not for any other unit operations.

® Plastic Flexiring” packing.

e Oil-fired preheating of the off-gas entering the carbon adsorption system to reduce relative

humidity and improve adsorption.

e Oil-fired heating of the catalytic oxidation unit.

There are two important observations related to the groundwater cleanup costs: (1) for the
cntire range of sensitivity analyses evaluated, the cleanup costs are dominated by annual operating
costs rather than by fixed capital costs; and (2) the cost of carbon adsorption is sensitive to the
concentration of contaminants in the groundwater, whereas the cost of catalytic oxidation is not.
A ESTIMATION OF THE FIXED CAPITAL COST

The fixed capital costs for grass roots systems are estimated by use of correlation equations from
the engineering literature, as summarized in the following subsections. These values are then
cscalated by use of an equipment installation factor (or Lang factor) to account for additional costs
such as installation, instrumentation and controls, yard improvements, piping, electrical, service
facilities, etc. The adjusted amount then is the fixed capital cost used for subsequent cost analyses.

1. Equipment Installation Factors

Equipment installation factors in the range of about 1 to 6 are found in miscellaneous sources
(References 37, 39, and 40). Explicit values for selected pollution control equipment, however, seem
to lie in the range of about 1.6 to 2.5. The base case values used in this study were 2.0 for either of
the two strippers, and 1.6 for either of the two air treatment systems. Either or both may, however,
be used as input variables.

2. Fixed Capital Investment for Air Stripper and Associated Equipment

a. Stripper Air Fan and Motor

Cost data for air fans from Vatavuk & Neveril (Reference 35) were examined. The cost

data, however, are presented in the form of somewhat complex combinations of graphs which are
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difficult to translate into computer algorithms. Therefore, cost values were obtained manually from
their graphs as a function of the range of stripper sizes used in this manual. Since the stripper size
is characterized in part by water throughput rates, it was possible to generate the following

correlation:

C, = F,, + 1000 = [L'/301°* , en

where C, is the cost in 1977 dollars of the air fan and motor, F,, is the applicable materials factor,
and L’ is the water flow rate in gallons per minute.
b. Water Pump and Motor
Corripio et al. (Reference 41) use multiple equation sets for cost estimation purposes;
these multiple sets are somewhat awkward to install into a spreadsheet. A few cost values were
manually calculated from their sets of equations. A log-log scaling plot was then evaluated, and the
following cost correlation equation was generated for a submersible centrifugal pump with a stainless

steel head:
C, = 1.7 = 4040 (L'N440)°%7 | (28)

where C, is the cost of pump and motor in 1977 dollars.

The scaling factor of 0.7 is consistent with median values for many equipment systems
(Reference 37). In the absence of any data for the scaling factor, a common approach is to estimate
on the basis of 0.6.

c. Stripper Shell

The weight, W, of the total stripper shell and structural accessories was estimated on the

assumption of 0.25-inch steel construction.

The C, (Reference 42) in 1977 dollars was then estimated as:

C, = CyF, , (29)

where
Fy = 1.0 for carbon steel, 1.7 for stainless steel,
Cg = exp{6.329 + 0.18255(InW,) + 0.02297(InW,)?,
W, = 117D, Z' T, p
d. Plastic Pall Rings
The cost of plastic Pall rings in 1990 dollars is:

32




C, = $11.00/ft> (1-inch plastic Flexirings) (30)
C, = $5.50/ft* (2-inch plastic Flexirings) 31

C, = $3.50/ft> (3-inch plastic Flexirings) 32)

3. Fixed Cost of Emission Control Equipment Utilizing Activated Carbon Adsorption

The size chosen for the carbon adsorption units affects the initial capital costs, the recycle
interval (the length of time between regenerations), and the operating expenses. In order to size the
carbon units, the number of days in a recycle interval was set up as an input variable in the
spreadsheet. This allows calculation of a carbon unit size for whatever other technical specifications
may have been input for costing purposes. One additional carbon unit is specified for standby and
to minimize downtime during recycle. The initial purchase requirement for the carbon load is then
determined by the size and number of carbon adsorption units.

The cost of the carbon units for the basic unit, fans, motors, and controls, exclusive of the

initial carbon load itself, (Reference 43) is

C, = F (332 W, ~ 36400) , @3)

where

C, is the cost in 1977 dollars,

W, =2 M8/q.,

10,000 < W_ < 200,000,

Fy = 1.0 (carbon steel).
The cost of the initial carbon bed load is based on the 1977 cost of carbon at $1.00/pound.

4. Fixed Costs of Emission Control Equipment Utilizing a Catalytic Oxidation Unit

Vatavuk and Neveril (Reference 35) provide a nonlinear correlation equation for catalytic
oxidation units. In the size range of interest to this study, however, a good linear fit can be made to
that portion of their Figure 4 of interest. For "packaged units" (which includes preheater, blower,

etc.), the cost is

C, = 225 G’ + 24,000 , 39
where G' is the air flow rate in standard cubic feet per minute and C, is in 1979 dollars.
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5. Fixed Capital Investm~nt Cost for Centrifugal Contactor
Actual purchase prices for two centrifugal contactor units were available for 50 and

1000 gallon per minute capacities”. Log-log scaling gave the centrifugal contactor cost as

C, = 189,000 (Q,/2.23)** , 35)

where Q is the liquid flow rate in cubic feet per second and C, is in 1990 dollars. This equation
holds for 0.11 < Q; < 2.23. The cost figures supplied were for complete systems, including packing.
B. ESTIMATION OF OPERATING EXPENSE COSTS

1. General Assumptions for Inflation and Interest Rates

The average annual inflation rate for the 1977-1988 period in the chemicals industries has
been 4.84 percent. This is a compound average of the Chemical Engineering and the Marshall &
Swift annual inflation indices (provided monthly in Chemical Engineering journal). In all cases, that
annual rate has been used to adjust older price bases forward to 1990 dollars.

Annual interest generally is related to annual inflation. Twenty or more years ago, applied
interest rates tended to be approximately 3 percent higher than the inflation rate; i.e., the "real
interest” rate was averaging around 3 percent annually. During the late 1970s, the real interest rate
rose substantially. Over the past decade, it has been moving generally back down to the vicinity of
5 percent (Reference 44). A S percent annual real interest rate was used throughout this study,
although it is treated as an input variable and other values can also be examined. The combination
of the real interest rate and the inflation rate leads to an applied interest rate of slightly less than
10 percent annually as the base case.

2. General Assumptions for Overhcad Rates

Cost estimation for overhead rates may well generate more diverse opinion than any other.
Both a single rate/single base (References 44, 45, 46, and 47) and a multiple rate/multiple basc
method were evaluated. The maximum spread between the two methods was about plus or minus
10 percent, although the overall uncertainty of the total analysis may well be plus or minus 25 percent
(Reference 37). Thus, it was felt that the more complex multiple-rate method was not warranted and

the bulk of the evaluation was done with the single rate/single base method.

‘S. P. Singh, Personal Communication with R. M. Counce, September 1989.

34




In general, a high overhead of 100 percent, shown as an input variable of Table 3, was used
for either the packed column stripper or the centrifugal contactor. This was done because, in all
cases, all of the direct labor is loaded into the expense base for the stripper unit, as discussed below.
A lower rate of 25 percent was applied to the two air treatment systems.

3. Fuel and Electricity Costs

The annual fuel and electricity requirements are provided by the design portion of the
sprcadsheet.

The fuel costs involve the assumption that the air stream will be preheated using No. 2 oil
as the energy source. For the carbon adsorption unit, the air is preheated to 100°F. This preheating
is to reduce the relative humidity of the stream and thereby improve the performance of the carbon
adsorption system. For the catalytic oxidation unit, the air is preheated to 900°F.

Both fuel and electrical power costs vary around the country. The base-case values used here
are typical of current costs in the southeastern United States in 1990; however, they are provided as
input variables.

4. Charcoal Regeneration
The regeneration of charcoal is a major component of the annual expense base for the

carbon adsorption units. This expense may be estimated by

2 3
W, W, W, 36)
ER =077 -194|—} +281|—] - 1.38 ,
10 10 10

where Eg is in dollars per pound of carbon regenerated. This correlation expression was generated
by curve fitting to the graphical information of Adams et al. (Reference 30) for the multihearth
method of carbon regeneration. The authors indicate that the regeneration cost estimates allow for
25 percent excess capacity, about 12 percent carbon replacement during each regeneration, and for
all other related costs.
5. Maintenance

Annual maintenance costs in the range 5 to 15 percent of the fixed capital investment are
commonly quoted (References 37 and 39). This wide range is simply indicative of the actual wide
range of true maintenance costs.

Because of such uncertainties, the maintenance cost is handled as an input variable in

Table 3. A typical value is the median of 10 percent.
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6. Pall Ring "Maintenance®
Total replacement on a 4-year cycle was assumed, which Icads to an annual replacement cost
equal to 25 percent of the initial investment cost.
7. Labor
One full-time equivalent (FTE) engineering technician level at $24,000/year direct salary in
1990 dollars was assumed. This is somewhat higher than suggested by Neveril (Reference 39), but
the higher work load was used here as a conservative approach. No labor is loaded onto the two air
treatment systems. All labor is loaded onto the stripper for all technical options.
C. TECHNICAL COMBINATIONS OF EQUIPMENT

Six technical configurations were considered in this study, as shown below:

Packed-column stripper ALONE
PLUS carbon adsorption treatment
PLUS catalytic oxidation
Centrifugal Contactor ALONE

PLUS carbon adsorption treatment

PLUS catalytic oxidation

Both fixed capital and expense components of the processing costs were presumed to be linearly
additive for any combination of the applicable unit operations. More information on capital and
operating costs for these options is found in Wilson et al. (Reference 1).

D. ESTIMATION OF CLEANUP COSTS BY OPERATING LIFETIME FINANCIAL

ANALYSIS

As described above, the capital and annual operating expense costs from VOC-2.100 are input
into VOC-2.300 to calculate the total cost per 1000 gallons of groundwater processed over a 20-ycar
depreciation period. The operating period is also assumed to be 20 ycars in the example results
presented later. By changing inputs to the spreadsheet (per the instructions in Scction V), the cffects

of independently varying the depreciation period and the operating period may be examined. For
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example, the operating period could be S years with the same depreciation period of 20 years. The
processing costs will be seen to decrease, primarily because the effect of inflation on expense costs
is less for the shorter time. If the depreciation and the operating periods are set to the same value,

the capital cost will become a greater fraction of the total cost as the depreciation/operating period
dccreascs.




SECTION V

INSTRUCTIONS FOR USE OF COST-ESTIMATING SOFTWARE

This section presents the instructions for using the cost-estimating software (available {rom
Tyndall AFB, as dctailed later). One software program may be used to gencrate capital and
operating expense <ost estiinates for air stripping with emissions control processes. These estimates
may then be input into the operating lifetime financial analysis program to produce estimates of the
cleanup costs per 1000 gallons of groundwater processed.

In the following operational/procedural instructions, it is assumed that the user is generally
tamiliar with spreadsheets, and specifically familiar with the MS Multip’an series of spreadsheets. For
more explicit information on the spreadsheet software, refer to user manuals or to third party "user
texts.”

PRECAUTIONARY NOTE: The spreadsheets written for this project are in MS Multiplan
Version 2.01. They may be "upward loaded" into Version 3.0 or 4.0, simply by using the TRANSFER
LOAD sequence. In the process of upward loading, however, the spreadshect will be rewritten to
the disk in the higher version number and the lower version number will be lost. Thus, before
cxecuting an upward load, a backup copy in the original version number should first be made. The
spreadsheet may also be exported into MS EXCEL. Refer to the MS EXCEL user manual for
proper instructions. The sprcadsheet may be exported into LOTUS 123; however, significant portions
of the math and logic structure may be lost in the process. LOTUS and Multiplan do not use fully
compatible logic, math, and naming protocols, and major portions of these may have to be rewritten
if transferred to LOTUS.

The design and cost-estimating routines, as presented in the following Sections A and B,
gencrate estimates of the fixed capital costs and of the annual operating expense costs in terms of
the start-up year. These data are a necessary but not a sufficient set of information for systcm
cvaluation. For proper comparison of altcrnative systems, it is necessary to make use of opcrating
lifetime analysis information, as in Section C.

A. DESIGN AND COST ESTIMATING, WITHOUT SENSITIVITY ANALYSIS

A printout of the design and cost-estimating spreadsheet program, VOC-2.100, is shown in
Appendix D. The variables in the spreadsheet are identified in Appendix C.

The first 12 tables of VOC-2.100 are sct up to handle requisite design calculations. Seven tables,
D-D1B through D-D7B, handle the cost estimating and summaries for the jet fuel spill case. As
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described previously, the design is based on henzene, with factors applied as necessary to simulate
the behavior of a mixture of jet fuel components. Seven other tables, D-D1T through D-D7T, handle
the cost-estimating and summaries for a TCE spill case. There are 39 possible input variables, as
identified in Appendix C. All inputs to the spreadsheet should be made in Table D-1.

The following instructions assume that VOC-2.100 has been loaded into MS Multiplan using the
TRANSFER LOAD sequence. Brackets, [ ], are used to indicate variable names. When entering
variable names into the spreadsheets, do NOT enter the brackets.

Before making any changes to inputs, one should temporarily suppress recalculations:

|| OPTIONS RECALC NO

When RECALC is sct to NO, ITERATION can be set to YES or NO.

To locate any desired input variables of Table D-1 (or any named variables, ranges, or arcas
anywhcere in the spreadshect), use the GOTO NAME sequence. Using this sequence, set the variable
[VNUM] equal to zero to suppress the sensitivity analysis:

|| GOTO NAME [VNUM] 0

Again using the GOTO NAME scquence, enter the appropriate alpha or numeric information

for the variables of interest in Table D-1. For example,

GOTO NAME [WGM] 1000

will set the groundwater flowrate to 1000 gallons per minute. After setting values for the variables
of intcrest, make certain that no variable has been set to [VAR]. Do this by checking the
information in each ccll in each of the two columns with the heading VALUE in Table D-1. If a
variable has bcen <ct to [VAR], enter the appropriate alpha or numeric information. The

spreadsheet may now be run by resctting RECALC and ITERATION:

OPTIONS RECALC YES ITERATION YES
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The spreadsheet will run and generate a single set of outputs for the set of input variables as
specified in Table D-1. Table D-2 summarizes those inputs plus some additional "derived values."
Any or all of the 26 tables of the spreadsheet, any range, or any single variable value may then

be printed by

PRINT OPTIONS

with the table, range, or variable specified by NAME and with other paramcters, such as margins,
ctc., specified through the spreadsheet print menu.
B. DESIGN AND COST ESTIMATING, WITH SENSITIVITY ANALYSIS

The spreadsheet is set up to provide the option of automatic iteration through any specificd
sequence of values of any single numeric input variable found in Table D-1. Because of the logic
structure involved in "table building” in this case, the run time will be approximately 20 minutes for
an IBM XT-generation machine. The run time will be approximatcly 1.5 minutes for a
386-generation machine.

To perform a single-variable sensitivity analysis, proceed as already outlined above. However,
before initiating calculations by resetting RECALC to YES, the following additional steps must be
carried out. First, go to the variable [VI] using the GOTO sequence:

GOTO NAME vIj "

Enter, as an alpha entry, using the naming notation of the Table D-1, the NAME of the input
variabic for which the sensitivity analysis is to be performed. For example, if the groundwatcr

flowrate is the variable of interest, then:

ALPHA [WGM] "

Enter numeric values for the next three variables, [VIN], [VSTEP], and [VNUM]. These cntrics

will then control:
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® the initial numeric value of the variable,

® the incremental value for each iteration of the sheet, and

® the total number of values to be run (maximum number for [VNUM] is 15).

Finally, before initiating calculations, the variable for which the sensitivity analysis is being done
must be set to [VAR] using the VALUE command. For example, if [WGM] is the variable of

interest:

GOTO NAME [WGM) VALUE [VAR] "

As in the previous section, make certain that all other input variables in Table D-1 have been set to
an appropriate numeric or alpha value, and NOT to [VAR)]. When all variable entries are complete,

initiate calculations by:

| oprions | REcALc YES ITERATION | YES |

The 14 cost tables contained in Appendix D contain an illustrative sensitivity run. These tables
will automatically clear and reset themselves if one subsequently wishes to run a different sensitivity
analysis.

C. OPERATING LIFETIME FINANCIAL ANALYSIS

A complete illustrative printout of the program spreadsheet VOC-2.300 is provided as
Appendix E. This spreadsheet is used for operating lifetime financial analyses. General procedures
(i.e., the initial suppression of recalculations, subsequent printing) are the same as outlined previously.

For calculation of the processing cost per 1000 gallons of groundwater with VOC-2.300, the
values for capital and operating expense costs obtained from running VOC-2.100 are used. As
described previously, running VOC-1.00 without sensitivity analysis will generate one set of capital
and operating expense costs, while running with sensitivity analysis can generate up to 15 sets of costs.

To run VOC-2.300 for a particular set of capital and operating expense values, first set RECALC
to NO. Then, in Table E-1, enter the value for the capital cost by:

GOTO NAME [F] CAP "

where CAP is the numcric value for capital cost. Next, enter the operating expense cost by:

41




GOTO NAME [E] EXP ||

where EXP is the numeric value for the initial year operating expense cost. Finally, enter in
Table E-1 any other numerical changes/inputs that you wish to have apply to the equipment system
construction phase.

In Table E-4, set the groundwater pumping rate (in gallons per minute) to the value that

corresponds to the sct of capital and operating expense costs that was input in Table E-1:

GOTO NAME [WPR] RATE ||

where RATE is the numeric value of the pumping rate. The variable [M], the number of operating
years, may be set to some other value less than 20 years (the spreadsheet is set up for a maximum
of 20 years), if desired. Values for other variables in Table E-4 may be entered, except for those

values which are derived from previous inputs. The spreadsheet may now be run by:

| oprions RECALC YES ITERATION NO TI

since no iteration is required for the calculations of VOC-2.300.

When calculations are completed, the processing cost information may be obtained from
Table E-8 of the spreadshect. The total processing cost per 1000 gallons on a cashflow basis is found
in Row 8, Column 68. On a depreciation basis, the total processing cost is found in Row 19, Column
68. The individual contributions to the total cost of the operating expense and the fixed capital
depreciation are found in Row 13, Column 68 and Row 16, Column 68, respectively.

D. EXAMPLES OF DESIGN AND COST ANALYSIS RESULTS

The information presented in this section was generated by (1) running spreadsheet VOC-2.100
to perform design and cost estimation with sensitivity analysis to produce estimates of initial fixed
capital cost and initial year expense cost and (2) running sprcadshect VOC-2.300, using the estimated
costs from Step (1) as input, to produce the operating lifctime cost estimates. In Step (1), sensitivity
analyses were performed for three variables: groundwater flow rate, stripping factor, and flooding
factor. Air stripping of TCE (trichloroethylene) from groundwater was considered, where the base-

case conditions were (1) 99 percent removal efficiency, (2) a stripping factor of 4, (3) a flooding
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factor of 0.4, and (4) 10 ppm of TCE in the groundwater. Figures 8 through 10 show the dollar cost
per 1,000 gallons of groundwater processed as a function of groundwater flow rate, stripping factor,
and flooding factor, respectively. Included on each figure are the results for the three different cases
of (1) air stripping only, (2) air stripping with carbon adsorption, and (3) air stripping with catalytic
oxidation.

Figure 8 demonstrates the economy of scale; the processing cost decreases with increasing water
flow rate or, in effect, the size of the equipment. There is little difference between the packed
stripper and the centrifugal contactor costs. As expected, the costs for the two cases with emissions
control are significantly higher than for air stripping alone. For TCE, the carbon adsorption and the
catalytic oxidation emissions control options produce approximately the same processing costs as a
function of water flow rate. With higher concentrations of contaminant in the groundwater, the
caibon cost will increase due to the higher carbon usage while the catalytic oxidation cost will be
essentially unaffected. This may be seen in Wilson et al. (Reference 1), where cases are presented
for different concentrations of jet fuel in groundwater.

In Figure 9, the processing cost for air stripping alone is relatively insensitive to stripping factor.
However, for carbon adsorption and catalytic oxidation, the cost increases with increasing stripping
factor. In the case of catalytic oxidation, the cause of the increasing cost is the larger size of the
oxidation unit required as the air flow rate increases. For carbon adsorption, the capacity of the bed
decreases with increasing air flow rate as a result of the lower concentration of the contaminants in
the effluent air from the stripper. Figure 10 shows that, in all three cases, the processing costs are
independent of flooding factor for all practical purposes.

As pointed out in Section V.A, there are 39 input variables to the cost estimation spreadsheet
which may be examined for their impact upon the cost of the air stripping systems. Examples of the
effects of three of these variables have been presented here. In Appendix E, results from single
variable sensitivity analyses are given for installation factor, contaminant removal efficiency, the
applied overhead rate, and the carbon regeneration interval.

The spreadsheets described here should be very useful for the cvaluation of competing
alternatives for groundwater cleanup. Quite often, the choice between alternatives is made on the
basis of competitive bids for the installed capital equipment system, i.e., the low bidder on equipment.
However, as may been seen in the dctailed analyses presented in the Appendix, one should not
overlook the significant effect of the operating expense in determining the true cost of cleanup

operations.
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Copies of the VOC-2.100 and VOC-2.300 spreadsheets are available from the Chemical/Physical
Treatment Technology Area Manager, HQ AFESC/RDVW, Tyndall AFB, FL. Include a diskette

with your request.
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SECTION VI

CONCLUSIONS

The spreadsheet-based model developed and described herein can be readily utilized by Air
Force personnel for the evaluation and selection of an air stripping with emissions control technology
for the remediation of VOC contaminated groundwater. If desired, the correlations for design and
cost estimations can be updated as new information becomes available. By varying financial input
parameters, such as depreciation period, interest rates, etc., different scenarios may be evaluated for

particular operating conditions of groundwater flowrate, contaminant concentration, etc.
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APPENDIX A

ESTIMATION OF GAS-PHASE FREUNDLICH ISOTHERM PARAMETERS
FOR VOCS OVER ACTIVATED CARBON

To estimate the performance of gas-phase adsorption, adsorption equilibria are necessary. The
program SPEQ, furnished by J. C. Crittenden of Michigan Technological University, provides
cstimates of such equilibria in the form of single-component Freundlich parameters. Application of
this program is presented by Crittenden et al. (Reference 27). The program utilizes the Dubinin-
Radushkevich equation described in Chapter 2. The program proceeds interactively and requires the
following information for each component of interest:

Compound name

Antoine Equation Constant A

Antoine Equation Constant B

Antoine Equation Constant C

BETA (affinity coefficient)

Density (gram/cm®)

Molecular Weight

System Pressure (mm Hg)

Temperature (°C)

Desired Gas Concentration (micrograms/liter at STP)

Initial concentration for integration (ugram/liter)

Integration concentration step (ugram/liter)

The latter two parameters must sometimes be determined by trial and error, but may be set at
about 1/100 and 1/1000, respectively, of the desired gas concentration. The program output is found
in SPEQ.OUT. This output includes the Freundlich parameters K [(umol/gram)/(zmol/L)""] and 1/n,
as well as the gas concentration range for plus or minus 10 percent prediction accuracy loading. The

program and sample output are shown as Exhibits A1 and A2, respectively.
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EXHIBIT A-1
PROGRAM NAME -~ SPEQ
LANGUAGE - FORTRAN

THIS PROGRAM USES THE D-R EQUATION TO PREDICT THE SURFACE LOADING FOR
A DESIRE GAS CONCENTRATION (ug/L STP). THE PROGRAM WILL THEN FIND
THE CORRECT FREUNDLICH PARAMETER IS SUCH A MANNERS AS THE SPREADING
PRESSURE FOR THE CALCULATED FREUNDLICH PARAMETER WILL BE THE SAME AS
THE SPREADING PRESSURE CALCULATED FOR THE D-R EQUATION.

THE SPREADING PRESSURE IS FOUND BY DOING A NUMERICAL INTEGRATION THAT
MAKES USE OF THE TRAPEZOID RULE.

PROGRAM DEVELOPED BY: RANDY D. CORTRIGHT, Graduate Student

DEVELOPED AT : MICHIGAN TECH UNIVERSITY
Houghton, Michigan 49931

INPUT:
INPUT THE FOLLOWING PARAMETER INTO A FILE NAME SPEQ.IN

COMPOUND NAME

ANTOINES EQTN. A

ANTOINES EQTN. B

ANTOINES EQTN. C

BETA

DENSITY G/CC

MOLECULAR WEIGHT

SYSTEM PRESSURE IN MM HG

TEMPERATURE DEG C

DESIRE GAS CONCENTRATION IN MICROGRAMS/LITER (STP)

OUTPUT

OUTPUT WILL BE SENT TO THE FILE NAME SPEQ.OUT

THE OUTPUT WILL GIVE INTERMEDIATE SPREADING PRESSURE VALUES FOR
INTERMEDIATE GAS CONCENTRATIONS, THE FINAL SPREADING PRESSURE,

THE EQUIVALENT FREUNDLICH PARAMETERS, AND THE CONCENTRATION RANGE
WERE THE D-R PREDICTION AND THE FREUNDLICH PREDICTION ARE WITHIN 10 %

o NeNeNo Ko Ro Ko RoRoRoRo No e NoNo o ReRo o Ne o o Re NoNoNoNe NoNe NoNoNo o NoNo NoNo No No o No No No No N 9!

CHARACTER NAME*25

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
DOUBLE PRECISION N,NA,NB
OPEN(7,FILE='SPEQ.OUT"’)

READ IN THE INPUT DATA FROM THE SCREEN

[oNoNe!

WRITE(*, 101)

101  FORMAT(2X, ‘BEGIN EXECUTION OF PROGRAM’,///)
write(*,5000)

S000 FORMAT(2X, 'ENTER THE COMPOUND NAME ? ‘)
READ (*,6500) NAME

6500 FORMAT (A25)
WRITE(*,600)
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600

700

800

300

100

110

120

130

3434

1111

1112

FORMAT (2X, ‘ENTER ANTOINES CONSTANT A 2 ')

READ(*,*) A

WRITE(*,700)

FORMAT (2X, ‘ENTER ANTOINES CONSTANT B ? ‘)

READ(*,*) B

WRITE(*,800)

FORMAT (2X, ‘ENTER ANTOINES CONSTANT C ? )

READ(*,*) C

WRITE (*,900)

FORMAT (2X, ‘ENTER THE CONSTANT BETA ? ')

READ (*,*) BETA

WRITE(*,100)

FORMAT (2X, 'ENTER THE DENSITY OF THE COMPOUND IN GM/CM**3 ? ‘)
READ(*,*) DEN

WRITE(*,110)

FORMAT (2X, ‘ENTER THE MOLECULAR WEIGHT OF THE COMPOUND ? ‘)
READ (*,*) WEIGHT

WRITE(*,120)

FORMAT (2X, ‘ENTER THE SYSTEM PRESSURE IN mm HG ? )
READ(*,*) PRESS

WRITE (*,130)

FORMAT (2X, ‘ENTER THE SYSTEM TEMPERATURE IN DEG. C ? ‘)
READ (*,*) TEMPC

WRITE(*,3434)

FORMAT (2X, ‘ENTER THE AVERAGE INFLUENT CONC. IN UG/L ? ')
READ(*,*) CONIN

WRITE(*,1111)

FORMAT (2X, ‘ENTER THE INITIAL CONC. FOR INTEGRATION IN UG/L ? ‘)
READ (*,*) CONC

WRITE(*,1112)

FORMAT (2X, ‘ENTER THE INTEGRATION CONC. STEP IN UG/L ? ‘)
READ(*,*) H

C

C CALCULATE THE COMPOUNDS VAPOR PRESSURE AT THE SYSTEMS PRESSURE
C USING THE ANTOINES EQUATION
C

QO

10

TEMPK = TEMPC + 273.0
VP = 10.0**(A - B/(TEMPC+C))

PRINT OUT THE DATA READ INTO THE PROGRAM

WRITE(7,10) NAME,A, B,C, BETA, DEN, WEIGHT, PRESS, TEMPC,CONIN
FORMAT(‘ COMPOUND - ‘, A25,//

THE ANTOINES EQTN. A IS ‘, F7.2, /

THE ANTOINES EQTN. B IS ‘, F7.2, /

THE ANTOINES EQTN. C IS ‘, ¥7.2,/

THE VALUE OF BE.A IS ‘, F7.5,/

THE LIQUID DENSITY IN G/CC IS ', F7.5,/

THE MOLECULAR WEIGHT IS °, F6.2,/

THE SYSTEM PRESSURE IN MM HG IS ’, F6.2, /

THE SYSTEM TEMPERATURE IN DEG C IS ‘, F6.2,/

* INLET GAS CONCENTRATION IN ug/l IS ‘, E12.5,//)
WRITE(7,20)

nNnNNWnNLVLVLVLY
D I T S SN

FORMAT(2X,’ CONC ug/l ’,3X, ‘Qo umol/gram’,3X,’ N ’,
s 3X, 'SPREADING PRESSURE’, /)

INTTALIZE THE VALUES FOR THE NUMERICAL INTEGRATION

NA = 0.0DO

QA = 0.0DO

SUM = 0.0DO

EXC = 1.0D-4

I=1

MAX = 10
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30 IF (CONC .LE. CONIN) THEN
C
C CALCULATE THE SURFACE LOADING AT THE GAS CONCENTRATION
Cc
PP = (CONC/WEIGHT * 22.40D0 / 1.0D+06) * PRESS
QB = 0.46D+6*DEN/WEIGHT *
$ EXP(~1.33D-7*(TEMPK/BETA * DLOG(VP/PP))**2)

CALCULATE THE VALUE OF dln C/d ln q AT THE GAS CONCENTRATION
THIS IS EQUAL TO THE FREUNDLICH N

e NeNeNe!

NB = 1.0D0 / (2.66D-7 * DLOG(VP/PP) * (TEMPK/BETA)**2)

TRAPEZOID RULE

oo

SUM = SUM + ((QB - QR)/2.0D0) * (NB + NA)
NA = NB
QA = QB

INCREMENT THE GAS CONCENTRATION

[eNeNe]

IF (I .LE. MAX) THEN
I=1+1
CONC = CONC + H
GO TO 30

ELSE

PRINT OUT INTERMEDIATE VALUES OF SPREADING PRESSURE

Qoo

WRITE(7,40)CONC,QA,NA, SUM
MAX = MAX + MAX
IF (CONC .GT. EXC) THEN
H=H * 10.000
EXC = EXC * 10.0DO
ENDIF
CONC = CONC + H
PRINT*, ‘CONC IS ‘, CONC,QA
I=1I+1
GO TO 30
END IF
ELSE
WRITE(7,40)CONC,QA,NA, SUM
40 FORMAT (2X,E12.5,3X,E12.5,3X,E12.5, 3X,E12.5)
c
C CALCULATE THE FREUNDLICH PARAMETERS AND PRINT OUT THE RESULTS
c
N = QA/SUM
XK = QA/ ((CONC/WEIGHT) ** N)
WRITE(7,50) SUM,N,XK
50 FORMAT ( ' N7
S * THE SPREADING PRESSURE IS ‘,E12.5,/
S * THE VALUE OF 1/N IS ’,E12.5,/
S * THE VALUE OF XK IS ‘,E12.5,//)
ENDIF

CALCULATE AND PRINT OUT THE LOWER BOUNDS FOR THE REGION WHERE THE
ERROR IS LESS THAN 10 % BETWEEN THE D-R PREDICTION AND THE
FREUNDLICH PREDICTION

[oNoNoNoNe!

CONC = CONIN
QB = QA
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60 IF(ABS((QB -QA)/QB) .LE. 0.10) THEN
PP = (CONC/WEIGHT * 22.40D0 / 1.0D+6)*PRESS
QB = 0.46D+6*DEN/WEIGHT *
$ EXP(-1.33D-7*(TEMPK/BETA * DLOG(VP/PP))**2)
QA = XK * (CONC/WEIGHT)**N
CONC = CONC - 0.001
GO TO 60
ELSE
WRITE(7,65) CONC,QB,QA
65 FORMAT (‘ LOWER CONCENTRATION BOUNDS IS ‘, E12.5,’ ug/L‘,/
* D-R PREDICTED LOADING IN umol/g IS ‘, E12.5,/
$ * FREUNDLICH LOADING IN umol/g IS ‘, El12.5,/)
ENDIF

CALCULATE AND PRINT OUT THE UPPER BOUNDS FOR THE REGION WHERE THE
ERROR BETWEEN THE D-R PREDICTION AND FREUNDLICH PREDICTION IS
LESS THEN 10 %

naoaan

CONC = CONIN
QB = QA
70 IF(ABS((QB -QA)/QB) .LE. 0.10) THEN
PP = (CONC/WEIGHT * 22.40D0O / 1.0D+6)*PRESS
QB = 0.46D+6*DEN/WEIGHT *
$ EXP(-1.33D-7* (TEMPK/BETA * DLOG(VP/PP))**2)
QA = XK * (CONC/WEIGHT)**N
CONC = CONC + 0.001
GO TO 70
ELSE
WRITE(7,75) CONC,QB,QA
75 FORMAT(’ UPPER CONCENTRATION BOUNDS IS ‘, E12.5, ‘ ug/L’,/
$ * D-R PREDICTED LOADING IN umol/g IS ’, E12.5,/
S * FREUNDLICH LOADING IN umol/g IS ‘, E12.5,/)

ENDIF
END
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EXHIBIT A-2
COMPOUND - m-xylene

THE ANTOINES EQTN. A IS 7.01

THE ANTOINES EQTN. B IS 1462.00

THE ANTOINES EQTN. C IS 215.00

THE VALUE OF BETA IS 1.15830

THE LIQUID DENSITY IN G/CC IS 0.86400

THE MOLECULAR WEIGHT IS 106.00

THE SYSTEM PRESSURE IN MM HG IS 760.00

THE SYSTEM TEMPERATURE IN DEG C IS 25.00

INLET GAS CONCENTRATION IN ug/l IS 0.20000E+03

CONC ug/1l Qo umol/gram N SPREADING PRESSURE

0.11000E+03 0.26874E+04 0.92344E+01 0.12136E+05
0.21000E+03 0.26874E+04 0.92344E+01 0.12136E+05

THE SPREADING PRESSURE IS 0.12136E+05
THE VALUE OF 1/N IS 0.22145E+00
THE VALUE OF XK IS 0.23098E+04

LOWER CONCENTRATION BOUNDS IS 0.15240E+03 ug/L
D-R PREDICTED LOADING IN umol/g IS 0.27814E+04
FREUNDLICH LOADING IN umol/g IS 0.25032E+04

UPPER CONCENTRATION BOUNDS 1S 0.69497E+03 ug/L

D-R PREDICTED LOADING IN umol/g IS 0.31845E+04
FREUNDLICH LOADING IN umol/g IS 0.35029E+04
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APPENDIX B

EVALUATION OF MULTICOMPONENT COMPETITIVE LOADING IN FIXED BEDS

The program ETMOD.FOR is a modification of the program ET furnished by J. C. Crittenden
of Michigan Technology University. The modification enables use of the current International
Machine and Statistics Library (IMSL) for the solution of a set of mathematical equations. “The
current IMSL routine used in this calculation is DNEQNF. The use of this program is described in
Crittenden et al. (Reference 25). The necessary input data are described below:

Line 1
Number of components (N), bed void fraction, bulk density of adsorbent, flow rate of fluid
(gallons per minute per square foot)

Line 2 through Line N+1
Component name, Freundlich K (micromole/gram) (liters/micromole)'®, Freundlich 1/n, initial

concentration (micrograms/liter), molecular weight

Typical input is provided in Exhibit B-1; typical output is found in Exhibit B-2. The computer
program ETMOD.FOR is shown in Exhibit B-3. Note that the input flow rate is in gallons per
minute per square foot. The program was originally written for water treatment. However, the
program may be used for air treatment by (1) converting typical air flow rate units (e.g., cubic feet
per minute) to those specified for the input flow rate, and (2) inputting Freundlich parameters that

apply for gas-phase adsorption.
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EXHIBIT B-1
TYPICAL INPUT
NOTE: This is liquid-phase data; however, gas-phase data can be used.

SAMPLE INPUT - ET.DAT

7,0.431,0.457,1.931
'M-XYLENE’,1044.0,0.2458,5.2,106.17
'OP-XYLENE’, 895.0,0.2587,9.3,106.17

’ETHYL BENZENE’, 714.4,0.2953,4.5,106.17
"TOLUENE’,475.0,0.3282,19.3,92.15
"TETRACHLOROETHENE',435.0,0.3847,37.6,165.83
"TRICHLOROETHENE’,192.0,0.4382,47.9,131.29
"CIS-DICHLOROETHENE',46.9,0.5562,70.9,96.93




EXHIBIT B-2

TYPICAL OUTPUT

EQUILIBRIUM THEORY RESULTS

NUMBER OF COMPONENTS :
BED VOID FRACTION :

BULK DENSITY OF ADSORBENT (g/cm**3) :

FLOWRATE (gpm/ft**2) :

5

0.430

0.480
224.400

BED VOLUMES FED VELOCITY OF WAVE TREATMENT CAPACITY

TO BREAKTHROUGH (cm/sec) (mg CARBON/L WATER)
ZONE( 1) 334614.5 0.45541907E-04 1.4345
ZONE( 2) 312381.6 0.48783232E-04 1.5366
ZONE( 3) 281513.9 0.54132259E-04 1.7051
ZONE( 4) 250931.5 0.60729666E-04 1.9129
ZONE( 5) 177584.1 0.85812782E-04 2.7029
COMPONENT= M, O, P-XYLENES
FREUNDLICH K (um/g)*(L/um)**1/n : 2390.00
FREUNDLICH 1/n : 0.1920
INITIAL CONCENTRATION (ug/L) : 356.0000
MOLECULAR WEIGHT : 106.1700
SINGLE SOLUTE TREATMENT CAPACITY
(mg CARBON/L WATER) : 1.1122
DIMENSIONLESS BED LENGTH
FOR ZONE( 1) : 0.53071239
C(ug/L) Q(ug/g)  ¢/Co DG QAVE  Cio (ug/L)
ZONE( 1) 356.000 248172.46 1.0000 .778E+06 248172.46 0.521E+03
ZONE( 2) 0.000 0.00 0.0000 .0OOE+00 231683.03 0.467E+03
ZONE( 3) 0.000 0.00 0.0000 .0OQE+00 208789.49 0.806E+02
ZONE( 4) 0.000 0.00 0.0000 .0OOE+00 186107.51 0.517E+01
ZONE( §5) 0.000 0.00 0.0000 .000E+00 131708.20 0.134E-02
COMPONENT= ETHYL BENZENE
FREUNDLICH K (um/g)*(L/um)**1/n : 2481.00
FREUNDLICH 1/n : 0.2194
INITIAL CONCENTRATION (ug/L) : 178.0000
MOLECULAR WEIGHT : 106.1700
SINGLE SOLUTE TREATMENT CAPACITY
(mg CARBON/L WATER) : 0.6033
DIMENSIONLESS BED LENGTH
FOR ZONE( 2) : 0.03777206
C(ug/L) Q(ug/g)  C/Co DG QAVE  Cio (ug/L)
ZONE( 1) 178.000 97709.62 1.0000 .613E+06 97709.62 0.662E+03
ZONE( 2) 569.459 370601.29 3.1992 .726E+06 115841.48 0.602E+03
ZONE( 3) 0.000 0.00 0.0000 .000E+00 104394.71 0.129E+03
ZONE( 4) 0.000 0.00 0.0000 .000E+00 93053.73 0.117E+02
ZONE( &) 0.000 0.00 0.0000 .00OE+00 65854.08 0.847E-02
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COMPONENT= TOLUENE

ZONE (
ZONE (
ZONE (
ZONE (
ZONE (

1)
2)
3)
4)
5)

FREUNDLICH K (um/g)*(L/um)**1/n :
FREUNDLICH 1/n :
INITIAL CONCENTRATION (ug/L) :
MOLECULAR WEIGHT :
SINGLE SOLUTE TREATMENT CAPACITY
(mg CARBON/L WATER) :
DIMENSIONLESS BED LENGTH
FOR ZONE( 3) :

C(ug/L) Q(ug/q) ¢/Co
C2.530 10453.11 1.0000

65.897 12800.62 1.0539
498.542 294363.26 7.5654
0.000 0.00 0.0000
0.000 0.00 0.0000

COMPONENT= BENZENE

ZONE (
ZONE (
ZONE (
ZONE (
ZONE (

1)
2)
3)
4)
5)

FREUNDLICH K (um/g)*(L/um)**1/n :
FREUNDLICH 1/n :
INITIAL CONCENTRATION (ug/L) :
MOLECULAR WEIGHT :
SINGLE SOLUTE TREATMENT CAPACITY
(mg CARBON/L WATER) :
DIMENSIONLESS BED LENGTH
FOR ZONE( 4) :

C(ug/L) Q(ug/g) c/co
45.930 3555.72 1.0000
46.698 4090.92 1.0167
55.124 9574.93 1.1805

432.583 230949.58 7.8474
0.000 0.00 0.0000

COMPONENT= N-PENTANE

ZONE (
ZONE (
ZONE (
ZONE (
ZONE (

2)
3)
4)
5)

FREUNDLICH K (um/g)*(L/jum)**1/n :
FREUNDLICH 1/n :
INITIAL CONCENTRATION (ug/L) :
MOLECULAR WEIGHT :
SINGLE SOLUTE TREATMENT CAPACITY
(mg CARBON/L WATER) :
DIMENSIONLESS BED LENGTH
FOR ZONE( 5) :

C(ug/L) Q(ug/g)  c/co
37.440 440.13 1.0000
37.520 496.19 1.0021
38.156 909.92 1.0169
41.025 2592.67 1.0752

132.067 50186.75 3.2192
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2029.00

0.2779
62.5300
92.1400

0.3725

0.06233369

DG
.187E+06
.217E+06
.659E+06
.000E+00
.000E+00

QAVE

10453.11
10609.09
38647.99
34449.44
24379.85

1427.00

0.4288
45.9300
78.1100

0.5174

0.07688140

DG
.864E+05
.978E+05
.194E+06
.596E+06
.000E+00

QAVE
3555.72
3591.28
4182.55

28817.53
20394.16

518.00
0.4876
37.4400
72.1500

1.3794

0.29230047

DG
.131E+0S
. 148E+05
.266E+05
. 705E+05
.424E+06

QAVE
440.13
443.85
489.91
718.34
15177.98

Cio (ug/L)
0.189E+04
0.175E+04
0.520E+03
0.779E+02
0.259E+00

Ccio (ug/L)
0.345E+04
0.329E+04
0.150E+04
0.438E+03
0.108E+02

Cio (ug/L)
0.210E+0S
0.201E+05
0.101E+05
0.342E+04
0.132E+03
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EXHIBIT B3

*xx*****EQUILIBRIUM THEORY PROGRAM**#*%x%xw

THIS PROGRAM CALCULATES MULTICOMPONENT BREAKTHROUGH FOR FIXED
BED ADSORBERS. THE PROGRAM ASSUMES NO MASS TRANSFER RESISTANCE.
IDEAL ADSORBED SOLUTION THEORY IS USED TO PREDICT COMPETITION.

PROGRAM WRITTEN BY: THOMAS FRANCIS SPETH

PROGRAM ALTERED BY R M COUNCE NOV 29,1989

THANKS TO: PAUL LUFT, DAVID HAND, AND DR. JOHN CRITTENDEN
FOR 1HEIR PREVIOUS WORK.

VARIABLE DEFINITIONS

BVF = BED VOID FRACTION

c = LIQUID PHASE CONCENTRATION (ug/L)

CH = WORKING CHARACTER

CHAR = NAME OF THE COMPONENTS (TEN LETTERS)

co = INITIAL CONCENTRATIONS (ug/L)

DEN = BULK DENSITY OF ADSORBENT (g/cm**3)

DGX = DIMENSIONLESS GROUP X: USED TO FIND STRONGEST COMPONENT
DGY = DIMENSIONLESS GROUP Y: USED TO FIND STRONGEST COMPONENT
FCN = SUBROUTINE THAT SETS UP THE NON-LINEAR EQUATIONS

FCS = C/CO

FLRT = FLOW RATE (GPM/FT**2)

FNORM = OUTPUT: SUM OF THE RESIDUALS

I = COUNTER

IAST = SUBROUTINE TO ACCOUNT FOR COMPETITIVE EFFECTS

IER = OUTPUT: ERROR PARAMETER

ITMAX = MAXIMUM NUMBER OF ITERATIONS

IX < USED TO KEEP TRACK OF STRONGEST COMPONENT

J = COUNTER

K = COUNTER

L = COUNTER FOR ERROR FIXING

M = COUNTER

MW = MOLECULAR WEIGHT

N = NUMBER OF COMPONENTS TOTAL

NN = NUMBER OF COMPONENTS IN A ZONE

NS = NSIG INPUT

NSIG = NUMBER OF DIGITS OF ACCURACY DESIRED IN THE COMPUTED ROOT
OATS = BED VOLUMES FED

PAR = PARAMETER SET

PAR(1 to N)= FREUNDLICH K VALUES

PAR(10 to 10+N)= FRUENDLICH N VALUES

PAR(20 to 20+N)= INITIAL CONCENTRATIONS

PAR(30)= VELOCITY OF THE WAVE: VW (cm/s)

PAR(35)= VELOCITY OF FLOW: VF (cm/s)

PAR(40 to 40+I)= CALCULATED LIQUID CONCENTRATIONS
PAR(60 to 60+I)= Q’s OF THE PREVIOUS WAVE

PAR(80 to 80+I)= C’s OF THE PREVIOUS WAVE

Q = SOLID PHASE CONCENTRATION (ug/g)

QAVE = AVERAGE Q IN 2ZONE

SSTC = SINGLE SOLUTE TREATMENT CAPACITY (mg C/L WATER)
SUM = USED TO CALCULATE VW AND OATS

VF = VELOCITY OF FLOW (cm/s)

VW = VELOCITY OF WAVE (cm/s)

WK = WORK VECTOR: LENGTH=N*(3*N+15)/2
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X = ONE DIMENSIONAL SOLID-PHASE CONCENTRATION (um/g)
XK = FRUENDLICH K’s (um/g)*((L/um)*=*1/N

XN = FRUENDLICH 1/n ‘s

z8Q = COMMON BLOCK

2z = VARIABLE USED TO CALCULATE INITIAL Q's

222 = DIMENSIONLESS BED LENGTH

SAMPLE INPUT

N,BVF,DEN, FLRT
CHAR(I),XK(I),XN(I),CO(I), MW(I)

CHAR(J), XK(J) ,XN(J),CO(J), MW(J)
NS

DIMENSIONS

IMPLICIT DOUBLE PRECISION (A-H, 0-2)

CHARACTER*40 CHAR(20),CH

DOUBLE PRECISION MW(20)

DIMENSION XN(20),XK(20),C0(20,20),C(20,20),Q(20,20),222(20),VW(20)
$,DGY (20,20),0ATS (20),QAVE(20,20),SSTC(20),WK(200),X(20)

$,XGUESS (20),FCS(20,20),CI0(20,20)

EXTERNAL FCN

COMMON /ZSQ/ BVF,DEN,M,PAR(100)

OPEN FILES

OPEN(4,FILE="ET.DAT’,STATUS='OLD’)
OPEN(7,FILE='ET.OUT’, STATUS="NEW')

READ IN DATA

PRINT*, ‘READING DATA’
READ(4,*) N,BVF,DEN,FLRT
DO 10 I=1,N
READ (4,*) CHAR(I),XK(I),XN(I),CO(I,1),MW(I)
CO(I,1)=CO(I,1)/MW(I)
XN(I)=1.0DO/XN(I)
CONTINUE

CHANGE UNITS

VF=FLRT*0.067910D0/BVF
DEN=DEN*1000.0DO0O

SET ZONE ONE CONCENTRATIONS TO ZERO

DO 20 I=1,N
VW(I)=0.0DO
PAR(60+I)=0.0D0
PAR(80+1I)=0.0D0

CONTINUE

SOLVE FOR EACH ZONE SEPARATELY

DO 100 J=1,N
PRINT*, ‘SOLVING FOR ZONE ‘,J




[SXeNeKe!
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L=0

M=J

NS=9

NN=N+1-J
zz=1.0D0
NSIG=NS
SUM=0.0D0
IRRREL=1.0E-05

CALCULATE INITIAL GUESSES OF Q's

DO 22 I=1,N
Q(I,J)=Z2Z*XK(I)*CO(I,J)**(1.0DO/XN(I))
CONTINUE

PUT Q INTO ONE-DIMENSIONAL FORM

DO 24 I=1,N
XGUESS(I)=Q(I,J)
CONTINUE

SET IAST PARAMETERS

DO 26 I=1,NN
XGUESS (I)=X(M-1+I)
PAR(I)=XK(M-1+I)
PAR(10+I)=XN(M-1+I)
PAR(20+1)=CO(M-1+I,J)
PAR(60+I)=PAR(60+M-1+1)
PAR(80+I)=PAR(80+M-1+I)
CONTINUE
PAR(30)=VW(J-1)
PAR(35)=VF
ITMAX=100

CALL DNEQNF (FCN, IRRREL, NN, ITMAX, XGUESS, X, FNORM)
FIX ANY ERRORS

IF (IERCD() .EQ. 1 .OR. IERCD() .EQ. 3) THEN
IF (L .EQ. 0) THEN
22=2.0D0*22
L=L+1
GOTO 21
ENDIF
IF (L .EQ. 1) THEN
22=3.0D0*Z2
L=L+1
GOTO 21
ENDIF
IF (L .EQ. 2) THEN
22=22/20.0D0
L=L+1
GOTO 21
ENDIF
IF (L .EQ. 3) THEN
WRITE(7,28) J
FORMAT(1X, 'THERE IS A PROBLEM WITH THE INITIAL CONCENTRATIONS’,
$/, 'THAT THE PROGRAMS FIXING ROUTINE DID NOT HELP. ZONE=’,I2)
ENDIF
ENDIF
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IF (IERCD() .EQ. 2) THEN
NSIG=NSIG-1
IF (NSIG .LT. O) THEN
WRITE(7,29) J
FORMAT (1X, ‘THE NUMBER OF SIGNIFICANT FIGURES HAS DROPPED BELOW
SZERO. THERE ARE NO RESULTS FOR ZONE‘,I2)
ENDIF
GOTO 21
ENDIF

SET X TO TWO-DIMENSIONAL OUTPUT FOR PRINT OUT

IF (M .GT. 1) THEN
DO 30 I=1,M-1
Q(I,J)=0.0D0
CONTINUE

ENDIF

DO 31 I=1,NN
Q(I+M-1,J)=X(I)

CONTINUE

CALCULATE THE LIQUID CO! ENTRATIONS

IF (M .GT. 1) THEN
DO 33 I=1,M-1
C(I,J)=0.0D0
CONTINUE

ENDIF

DO 34 I=1,NN

C(I+M-1,J)=PAR(40+I)

CONTINUE

DETERMINE THE STRONGEST COMPONENT IN ZONE J

DGX=0.0D0

DO 35 I=M,N
DG=DEN*Q(I,J)/(C(I,J)*BVF)
IF (DG .GT. DGX) THEN
DGX=DG
IX=I

ENDIF

CONTINUE

SET STRONGEST COMPONENT TO ZONE J

CH=CHAR(IX)
CHAR (IX)=CHAR(J)
CHAR(J)=CH

WM=MW (IX)
MW (IX)=MW(J)
MW (J)=WM

XXK=XK(IX)
XK (IX)=XK(J)
XK (J) =XXK

XXN=XN (IX)
XN(IX)=XN(J)
XN (J)=XXN




DO 37 K=1,J
XCO=CO(IX,K)
CO(IX,K)=CO(J,K)
CO(J,K)=XCO

XC=C(IX, K)
C(IX,K)=C(J,K)
C(J,K)=XC

XQ=Q(IX,K)
Q(IX,K)=Q(J,K)
Q(J,K)=XQ

7 CONTINUE

SET C’'s AND Q’'s FOR NEXT ZONE

e NeNo N

po 38 1=1,N
PAR(60+1)=Q(I,J)
PAR(80+1)=C(I,J)
8 CONTINUE

CALCULATE VELOCITY OF THE WAVE FOR ZONE J

00w

IF (J .EQ. 1) THEN
VW(J)=VF*BVF*CO(1,J)/(Q(1,J)*DEN+C(1,J)*BVF)
ENDIF
IF (J .GE. 2) THEN
SUM=(Q(J, 1) *DEN+BVF*C(J,1))*VW(1)
ENDIF
IF (J .GT. 2) THEN
DO 40 K=2,J-1
SUM=SUM+ ( (Q(J,K) *DEN+BVF*C(J,K) ) * (VW(K)-VW(K-1)))
40 CONTINUE
ENDIF
IF (J .GE. 2) THEN
VW (J)=(BVF*VF*CO(J,J)-SUM+(Q(J,J)*DEN+BVF*C(J,J))*VW(J-1)
$)/(Q(J,J) *DEN+BVF*C(J,J))
ENDIF

SET Co FOR NEXT ZONE

[ EeNe

DO 50 I=J+1,N
CO(I,J+1)=C(I,J)
50 CONTINUE
D~ 60 I=1,J
CO(I,J+1)=0.0D0
60 CONTINUE

100 CONTINUE
C CALCULATE BED VOLUMES FED

PRINT*, °CALCULATING VARIOUS PARAMETERS’
DO 110 I=1,N
SUM=(Q(I,1)*DEN+C(I,J)*BVF)*VW(1)
IF (I .GE. 2) THEN
DO 105 K=2,1
SUM=SUM+ (Q(I,K)*DEN+C(I,K)*BVF)*(VW(K)-VW(K~1))
105 CONTINUE
ENDIF
OATS(I)=SUM/(CO(I,I)*VW(I))
110 CONTINUE
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CALCULATE Q TOTAL AVERAGE FOR EACH ZONE

Qa0

DO 120 I=1,N
QAVE(I,1)=Q(I,1)
120 CONTINUE
DO 140 I=1,N
DO 130 J=2,N
QAVE(I,J)=(QAVE(I,J-1)*VW(J-1)+Q(I,J)*(VW(J)-VW(J-1)))/VW(J)
130 CONTINUE
140 CONTINUE

C CALCULATE DIMENSIONLESS BED LENGTH

DO 150 I=1,N
IF (I .EQ. 1) THEN
22Z(1)=0.0D0
ELSE
222 (1)=VW(I-1)/VW(N)
ENDIF
2ZZ(I)=VW(I)/VW(N)-22Z(I)
150 CONTINUE

C CALCULATE SINGLE SOLUTE TREATMENT CAPACITY

DO 160 I=1,N
SSTC(I)=1000.0DO*CO(I,1)**(1.0D0-1.0DO/XN(I))/XK(I)
160  CONTINUE

C CALCULATE DG'’s FOR PRINT OUT

DO 180 J=1,N
DO 170 I=1,N
DGY (I,J)=DEN*Q(I,J)/(C(I,J)*BVF)
IF {(c(I,J) .EQ. 0.0) DGY(I,J)=0.0
170 CONTINUE
180 CONTINUE

C CALCULATE C/Co FOR PRINT OUT

DO 195 J=1,N
DO 190 I=1,N
FCS(I,J)=C(I,J)/CO(I,J)
IF (co(I,J) .EQ. 0.0) FCS(I,J)=0.0
190 CONTINUE
195 CONTINUE

(o] CALCULATE Cio

DO 250 J=1,N
CISUM=0.0D0
DO 230 I=1,N
CISUM=CISUM+XN(I)*Q(I,J)
230 CONTINUE
DO 240 I=1,N
CIO(I,J)=(CISUM/XN(I)/XK(I))**XN(I)
240 CONTINUE
250 CONTINUE




C PUT INTO ug/L UNITS

DO 210 J=1,N
DO 200 I=1,N
CO(I,J)=CO(I,J)*MW(I)
CIO(I,J)=CIO(I,J)*MW(I)
Q(I,J)=Q(I,J)*MW(I)
QAVE(I,J)=QAVE(I,J)*MW(I)
C(I,J)=C(I,J)*MW(I)
200 CONTINUE
210 CONTINUE

C PRINT RESULTS

PRINT*, ‘PRINTING OUTPUT’
WRITE(7,900)
900 FORMAT(//,1X,T10, ‘EQUILIBRIUM THEORY RESULTS')
WRITE(7,910) N,BVF,DEN/1000.0D0,FLRT
910 FORMAT(1X,//,T10, 'NUMBER OF COMPONENTS :‘,TS4,I12,/,
$T10, ‘BED VOID FRACTION :’,T55,F5.3,/,
$ST10, ‘BULK DENSITY OF ADSORBENT (g/cm**3) :’,T50,F10.3,/,
ST10, ‘FLOWRATE (gpm/ft**2) :’,T50,F10.3,//)
WRITE(7,920)
920 FORMAT(T19, ‘BED VOLUMES FED’,T36, ‘VELOCITY OF WAVE’,T54,
S’ TREATMENT CAPACITY',/,
ST19, ‘'TO BREAKTHROUGH'’,T40, ‘' (cm/sec)’,T54, ' (mg CARBON/L WATER)‘,/)
DO 940 I=1,N
WRITE(7,930) I,OATS(I),VW(I),DEN*1000.0DO/OATS(I)
930 FORMAT (T8, ‘ZONE(‘,T13,I2,T15,°)‘,T17,F13.1,T36,E15.8,T52,F15.4)
940 CONTINUE
DO 1000 I=1,N
WRITE(7,950) CHAR(I),XK(I),1.0DO/XN(I),CO(I,1),MW(I),SSTC(I),I,

S 22Z(I1)
950 FORMAT(//, 'COMPONENT= ’,R40,//,
$ T10, ‘FREUNDLICH X (um/g)*(L/um)**1/n :°’,T45,F10.2,/,
$ T10, ‘FREUNDLICH 1/n :’,T45,F10.4,/,
$ T10, INITIAL CONCENTRATION (ug/L) :°’,T45,F10.4,/,
$ T10, ‘MOLECULAR WEIGHT :‘,T45,F10.4,/,
$ T10, ‘SINGLE SOLUTE TREATMENT CAPACITY',/,
$ T12,‘(mg CARBON/L WATER) :’,T40,F15.4,/,
$ T10, '‘DIMENSIONLESS BED LENGTH',/,
S T12,'FOR ZONE( ,T21,12,T23,‘) :‘,T45,F10.8,//,
$ T12, ‘C(ug/L)’,T24,°'Q(ug/qg)‘,T35,'C/Co’,T46, ‘DG’ ,T56, ‘QAVE',T63,
$ 'Cio (ug/L)‘)
DO 970 J=1,N
WRITE(7,960) J,C(I,J),Q(I,J),FCS(I,J),2GY(I,J),QAVE(I,J),
$ CIO(I,J)
960 FORMAT( ‘ ZONE(’,T7,12,T9,°)’,T11,F9.3,T22,F10.2,T33,

$F7.4,T43,E8.3,T52,F10.2,T63,E10.3)
970 CONTINUE
1000 CONTINUE

STOP

END

SUBROUTINE FCN

THIS SUBROUTINE WILL SET UP THE EQUATIONS THAT WILL BE USED IN
THE ZSPOW SUBROUTINE.

naaaaaoaaaa
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1010

1020

1030

1040

1050

SUBROUTINE FCN(X,F,NN)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION X(NN),F(NN)

COMMON /2SQ/ BVF,DEN,M,PAR(100)
PRINT*, ‘M=',M

QT=0.0D0

QNQ=0.0DO

DO 1010 I=1,NN

QT=QT+X(I)

QNQ=QNQ+PAR(10+I)*X(I)

CONTINUE

CALCULATE F(I)

IF (M .EQ. 1) THEN

DO 1020 I=1,NN
F(I)=-PAR(20+I)+X(I)/QT*(QNQ/PAR(10+I)/PAR(I))**PAR(10+1I)
CONTINUE

ENDIF

IF (M .GT. 1) THEN

DO 1030 I=1,NN
F(I)==-X(I)/QT*(QNQ/PAR(10+I)/PAR(I))**PAR(10+I)+( (X(I)-PAR(60+I)

$)*DEN*PAR(30))/( (PAR(35)-PAR(30) ) *BVF)+PAR(80+1I)

CONTINUE

ENDIF

CALCULATE LIQUID CONCENTRATION

IF (M .EQ. 1) THEN
DO 1040 I=1,NN
PAR(40+I)=X(I)*(QNQ/(PAR(10+I)*PAR(I)))**PAR(10+I)/QT
PRINT*, ‘X(I) ’,X(I},’ F(I) *,F(I)
CONTINUE
ENDIF
IF (M .GT. 1) THEN
DO 1050 I=1,NN
PAR(40+I)=( (X(I)-PAR(60+I))*DEN*PAR(30))/((PAR(35)-PAR(30))
S*BVF)+PAR(80+I)
PRINT*, ‘X(I) ’,X(I),‘’ F(I) *,F(I)
CONTINUE
ENDIF
RETURN
END
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APPENDIX C

SPREADSHEET VARIABLES

The following notation table applies specifically to the terminology used in the spreadsheets for
this project. It is important to recognize that the spreadsheet notation often is not thc same as the
notation used in the preceding sections of text. This arises because of typical software restrictions
as to acceptable notation. Because of this, all of the following spreadsheet notation is clearly and

explicitly defined.
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TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING

NAMES [b] ITEM DESCRIPTION |c]
CASF N Catalytic Unit Size Safety Factor

CcD? N Carbon Bulk Density, pounds/ft®

CF N Packing Factor (Treybal, 3rd Ed.)

CRI* N Carbon Recycle Interval, days

CSF* N Carbon Use Safety Factor

CUF N Contaminant Cleanup Factor

EC N Electricity Cost, $/kWh

EFFA? N Electrical Efficiency, Air Blowers

EFFH* N Electrical Efficiency, Air Heaters

EFFW* N Electrical Efficiency, Water Pumps

EIFC? N Equip. Inst. Cost Factor, Carbon & Catalysis
EIFS* N Equipment Installation Cost Factor, Stripper
F N Fanning Friction Factor fo Water Pipe

FAF* N Freundlich Adjustment Factor (BENZENE Only)
rc N Fuel Oil Costs, $/10° BTU

FF* N Flooding Factor (SEE ACCOMPANYING TEXT)
HGW?* N Groundwater Depth, feet

HPB* N Height of Each Packed Bed, Feet

HPL* N Horizontal Pipe Length, feet

I? N Average Annual Inflation Rate

» N Correlation Factor Term (Treybal, 3rd Ed.)
KF* N Consolidated Friction Loss Coefficient

LF N Operating Cycle Load Factor

MMF N Material (SS) Factor, Stripper

OHR* N Overhead Rate, on Expense

72




TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING (CONTINUED)

NAMES [b] ITEM DESCRIPTION |c]
om?* N Operations & Maintenance Factor
PAT* N Gas Stream Pressure, Atmospheres
PPBI* N Inlet Contaminant Concentration, ppb
PPBO N Outlet Contaminant Concentration, ppb
s N Stripping Factor {Greater Than Unity)
SF N Height Design Safety Factor

SIZE! A Size of Stripper Packing, mm (inches)
™ N Fahrenheit Temperature

TYPE? A Name/Type of Stripper Packing

VAaR? N Independent Variable, Current Value
v A Name of Independent Variable

VIN? N Initial Value of Independent Variable
VNUM* N Number of Parametric Steps to Run
VSTEP? N Size of Each Independent Variable Step
wGMm? N Water Feed Rate, gallons/minute

ABS N Abscissa for Pressure Gradient (Treybal, 3rd Ed.)
ABS2 N Treybal Abscissa, Table S

ABSB N ABS Individual for Benzene

ABST N ABS Individual for Trichloroethylene
ACAT N Air Flow Rate, ft*/minute, BENZENE
ACFM N Air Flow Rate, ft’/minute

ACFM1 N ACFM Individual for Benzene

ACFM2 N ACFM Individual for Trichloroethylene
ACFMB N Copied from ACFM1

AD N Air Density, pounds/ft®
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TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING (CONTINUED)

NAMES [b] ITEM DESCRIPTION (¢}
ALR N Air Loading Rate at Flooding, (pounds/minute)/ft?
AMCF N Air, pound moles/ft*

AORD N Adjusted Ordinate, FF * ORD

APM N Air Flow Rate, pounds/minute

APM1 N APM Individual for Benzene

APM2 N APM Individual for Trichloroethylene

APMB N Air Flow Rate BENZENE, pounds/minute
APMM N Air Flow Rate, pound moles/minute

AREA N Stripper Cross Section Area, ft?

AV1 N Air Viscosity, Centipoise

AV2 N Air Viscosity, pounds/feet sccond

BC N Carbon Breakthrough Capacity, pounds/pounds
CAPCATB N Catalysis Unit Installed Capital Cost, BENZENE
CAPCB N Carbon Unit Installed Capital Costs, BENZENE
CAPRB N Centrifugal Contactor Installed Capital Costs, BENZENE
CAPSB N Packed Stripper Installed Capital Costs, BENZENE
CARR N Total Pounds Carbon Needed, Time Base

CCu N Carbon Cycle Use BENZENE, pounds/cycle
CFPD N Carbon Cubic Feet Required, Time Base

CMFI N Contaminant Mole Fraction, In

CMFO N Contaminant Mole Fraction, Out

CN N Column Number Lookup Table 9

CPD N Adjusted Carbon Needed. pounds, Time Base
CPD1 N CPD, Individual for Benzene

CPD2 N CPD, Individual for Trichloroethylene
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TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING (CONTINUED)

|| NAMES [b] ITEM DESCRIPTION (c]

i CPS N Carbon Unit Design Size BENZENE, pounds
CpPV N Collision Function, Vapor
CRA N Carbon Recycled Annually BENZENE, pounds
Cup N Carbon Units Purchased [Number]
D1B T Table D1B, Area Name, BENZENE
D1T T Table D1T, Area Name, TCE
D2B T Table D2B, Arca Name, BENZENE Cost Estimate
D2T T Table D2T, Area Name, TCE Cost Estimate
D3B T Table D3B, Area Name, BENZENE Cost Estimate
D3T T Table D3T, Area Name, TCE Cost Estimate
D4B T Table D4B, Area Name, BENZENE Cost Estimate
DAT T Table D4T, Areca Name, TCE Cost Estimate
DSB T Table D5SB, Area Name, BENZENE Cost Estimate
DST T Table DST, Area Name, TCE Cost Estimate
D6B T Table D6B, Area Name, BENZENE Cost Estimate
D6T T Table D6T, Area Name, TCE Cost Estimate
D7B T Table D7B, Area Name, BENZENE Cost Estimate
D7T T Table D7T, Area Name, TCE Cost Estimate
DAK N Diffusivity, m%second
DAKA N Diffusivity, ft*/second
DALR N Derived Air Loading Rate, (pounds/minute)/ft?
DIA N Stripper Diameter, feet
DIALI N Stripper Diameter, Table D1B
DIN N Stripper Diameter, Inches
DORD N Derived Ordinate
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TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING (CONTINUED)

NAMES [b] ITEM DESCRIPTION (c]
DORDB N DORD, Individual for Benzene
DORDT N DORD, Individual for TCE
EXPCATB N Catalysis Unit Annual Expense, BENZENE
EXPCB N Carbon Unit Annual Expense, BENZENE
EXPRB N Centrifugal Contactor Annual Expense, BENZENE
EXPSB N Packed Stripper Annual Expense, BENZENE
FPC N Flood Point Coefficient
FUELI1B N Carbon Air Heater Fuel, 10° BTU/year
FUEL2B N Catalysis Unit Fuel, 10° BTU/year
GCH N Gravity Acceleration, Time = Hours
GCM N Gravity Acceleration, Time = Minutes
GCS N Gravity Acceleration, Time = Seconds
H N Henry’s Law Constants
HA N HTU, Air Feet
HA1 N Height of Transfer Unit, Table D1B
HF N Total Friction Loss Factor
HP1 N Air Blower, Total Horsepower
HP2 N Water Pump, Total Horsepower
HT N HTU, Total Feet
HTOT N Total Height of Stripper Packing, Feet
HTOT1 N Stripper Total Height, Table D1B
HTR N Total Stripper Height, Feet
HW N HTU, Water Feet
IN N Table Index Column, Table 8
INPD N Total Pressure Drop, inches of water
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TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING (CONTINUED)

NAMES [b] ITEM DESCRIPTION |c]
INPD1 N Total Pressure Drop, inches, Table D1B
INPD2 N INPD, Individual for TCE

INT N Flooding Ordinate, Intermediate Term Calculation
INT2 N Intermediate Calculation Factor, Table 5
INT3 N Intermediate Calculation Factor, Table 5
INT4 N Intermediate Calculation Factor, Table 5
K N Operating Ordinate

K1 N K Individual for Benzene

K2 N K Individual for Trichloroethylene

KW1 N Air Blower, Total Kilowatts

KW2 N Water Pump, Total Kilowatts

KWS N Total Stripper Electric Power, Kilowatts
KWS1 N KWS, Individual for Benzene

KWS2 N KWS, Individual for TCE

LPP N Liquid Packing Paramecter, B&F

LPP1 N Liquid Packing Parameter, B&F

LPP2 N Liquid Packing Parameter, B&F

LPP3 N Liquid Packing Parameter, B&F

LPP4 N Liquid Packing Parameter, B&F
MASSR N Mass Ratio, Water/Air

MOLER N Mole Ratio, Water/Air

MRAT N Air Stream Concentration, ppm by moles
MRATI N MRAT, Individual for Benzene

MRAT2 N MRAT, Individual for TCE

MSEP N Molecular Separations, Air-Contaminant
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TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING (CONTINUED)

NAMES [b] ITEM DESCRIPTION |c]
MWA N Molecular Weight, Air

MWK N Molecular Weight, Contaminant

MwWw N Molecular Weight, Water

NTU N Number of Transfer Units

NTU1 N Number of Transfer Units, Table D1B

ORD N Flooding Ordinate

PAGB N Pressure Gradient for Benzene, pounds/in2 foot
PAGBI N Pressure Gradient for Benzene, inches water/foot
PAGT N Pressure Gradient for TCE, pounds/in® foot
PAGTI N Pressure Gradient for TCE, inches water/foot
PB N Pressure Gradient BENZENE, pounds/ft* foot
PC N Plastic Pall Rings, $/ft®

PD N Water Pipe Diameter, feet

PDIN N Water Pipe Internal Diameter, inches

PGT N Pressure Gradient Data Array, Table 8

PPBD N Contaminant Concentration Change, ppb

PPD N Total Pressure Drop, pounds/in?

PT N Pressure Gradient TCE, pounds/ft? foot

PVOL N Packing Volume, ft?

PVOLI1 N Packing Volume, Table D1B

RCP N Computation Term, Vapor HTU

RN N Row Number Lookup Table 9

RRPMM N Contaminant Removal Rate, pound moles/minute
RRPPM N Contaminant Removal Rate, pounds/minute
SELB N Benzene Value Finder, Table 8
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TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING (CONTINUED)

NAMES [b] ITEM DESCRIPTION |c]|
SELORDB N Ordinatc Sclector BENZENE, Tablc 9
SELORDT N Ordinate Selector TCE, Table 9
SELT N Trichlorocthylenc Value Finder, Table 8
SENS T Control Sctup for Sensitivity Analysis
Sv N Schmidt Number, Vapor
SW N Schmidt Number, Weight
SWP1 N Stripper Weight, Table D1B
TA N Treybal Abscissa, Sclected for Table 8
TABI1 T Table 1, Arca Name, Decsign
TAB2 T Table 2, Arca Name, Design
TAB3 T Table 3, Arca Name, Design
TAB4 T Tablc 4, Arca Name, Design
TABS T Tablc §, Arca Name, Design
TAB6 T Table 6, Arca Name, Design
TAB7 T Tablc 7, Arca Name, Design
TABS T Table 8, Arca Namce, Design
TABY T Tablc 9, Arca Name, Design
TAB10 T Table 10, Arca Name, Design
TABI11 T Tablc 11, Arca Name, Design
TAB12 T Table 12, Arca Nanmic, Design
TC N Ceclsius Temperature
TCS N Total Pounds Contaminant Stripped, Time Basc
TK N Kclvin Temperature
TORD N Treybal Ordinate Table 9
TPL N Total Pipc Length for Watcr, feet
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TABLE C-1. NOTATION TABLE - DESIGN AND COST ESTIMATING (CONCLUDED)

NAMES [b] ITEM DESCRIPTION |c}
TPW N Total Pounds Water, Time Base

TR N Rankine Temperature

VPP N Vapor Packing Parameter, B&F

VPP1 N Vapor Packing Parameter, B&F

VPP2 N Vapor Packing Parameter, B&F

VPP3 N Vapor Packing Parameter, B&F

VPP4 N Vapor Packing Parameter, B&F

w1 N Air Blower, Total Watts

w2 N Water Pump, Total Watts

WAK N Water Diffusivity, m%/second

WAKA N Water Diffusivity, ft*/second

WCFM N | Water Feed Rate, ft¥/minute

WD N Water Density, pounds/ft®

WLR N Water Loading Rate, (pounds/ft®)/hour
WPM N Water Feed Rate, pounds/minute
WPMM N Water Feed Rate, pound moles/minute
WRAT N Air Stream Concentration, ppm by weight
WRATI N WRAT, Individual for Benzene
WRAT2 N WRAT, Individual for TCE

WVi N Water Viscosity, Centipoise

wVv2 N Water Viscosity, pounds/foot second
WVSI N Water Viscosity, Pa second

Z N Total Vertical Lift for Water, feet

[a] + = Designation of a variable design or cost input parameter.

[b] A = Alpha entry, N = Numeric entry, T = Table name for printing.

[c] Descriptive Comments. Names used in Tables D-DI1T through D-D7T for
TCE are not included since they are parallel to those used in BENZENE
Tables D-D1B through D-D7B.
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APPENDIX D

DESIGN AND COST-ESTIMATING SPREADSHEET

VOC-2.100

The following 26 tables make up spreadsheet VOC-2.100, which is written in MULTIPLAN
2.01. The file may be exported upward into MP 3.0 or MP 4.0 without difficulty. Tables D-1
through D-12 deal with the design parameters of a packed column, a carbon adsorption off-gas
trcatment system, and a catalytic oxidation off-gas treatment system. These 12 tables
simultaneously handle TCE and Benzene, the latter used as a marker for jet fuel. The seven
tables D-D1B through D-D7B are sensitivity analysis output summaries for the Benzene case, and
the seven tables D-D1T through D-D7T are the same for the TCE case. Tables D-D1B, D-D2B,
D-D1T, and D-D2T summarize requisite design information for use in single-variant sensitivity
analyses. Tables D-D3B through D-D5B and D-D3T through D-DST summarize the fixed capital
and the annual operating cost estimates for the packed column stripper, the carbon adsorption
off-gas treatment, and the catalytic oxidation off-gas treatment. Tables D-D6B and D-D6T
consolidate the fixed capital and the annual operating cost estimates for the packed column
stripper options. Tables D-D7B and D-D7T consolidate these for the centrifugal contactor
option.

Fixed capital and annual operating (non-capital) cost estimates have been adjusted to 1990
dollars in the following tables. Continuing inflation adjustments for the period of the operating
lifetime are handled in a separate spreadsheet, VOC-2.300, which is described in Appendix E.
Further details will be found in the related body of the text.
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APPENDIX E

OPERATING LIFETIME FINANCIAL ANALYSIS SPREADSHEET

VOC-2.300

The following eight tables make up spreadsheet VOC-2.300 written in MULTIPLAN 2.01. The
filc may be exported upward into MP 3.0 or MP 4.0 without difficulty. Table E-1 is for inputs to the
construction phase, and Table E-4 is for inputs to the operating lifetime phase. For the analyses in
this report, the construction phase is assumed to be zero years, so that Tables E-1 and E-4 are
cssentially identical. Table E-8 contains the output information, in terms of lifetime current dollars
cost per 1000 gallons of groundwater processed. Annual adjustments for inflation are included, using
the input inflation projection shown in Table E-4. The analyses are handled as 100 percent debt
financing to simulate a government-owned and operated activity. At 100 percent debt financing and
at zero salvage on the capital equipment, the lifetime processing costs per 1000 gallons of water
should be identical for a cash flow analysis and for a depreciation analysis. This identity is shown in
Table E-8. For cash flow analysis, the costs include the total capital costs and the sum of the yearly
opcrating expenses. For the depreciation analysis, the operating expenses are the same as for the
cash flow analysis. The capital costs, though, are the sum of the yearly depreciation amounts. Thus,
if the capital equipment is depreciated to a zero salvage value, the two analyses are identical. The
opcrating lifetime financial analysis is discussed in the related body of the text.

The lifetime processing costs shown in Table E-8 are for a particular set of input variables. In
Scction V of the text, examples were presented which showed how processing costs were affected by
variations in certain variables. Additional examples of such sensitivity analyses are presented in
Figures E-1 through E-4, which show the effects of variations in overhead rate, carbon recycle

interval, contaminant removal efficiency, and equipment installation factor.
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